Copyright (c) 2023 Tulasi S, Sumalatha
This work is licensed under a Creative Commons Attribution 4.0 International License.
Biosynthesis of Zinc Oxide Nanoparticles from Schrebera swietenioides Roxb. Leaves Extract and their Potent Photocatalytic Activities
Corresponding Author(s) : S. Lakshmi Tulasi
Asian Journal of Chemistry,
Vol. 36 No. 1 (2024): Vol 36 Issue 1, 2024
Abstract
Zinc oxide nanoparticles was synthesized using from Schrebera swietenioides Roxb. leaves extract. The size, shape, surface morphology, functional groups and chemical composition of the aqueous extracts mediated zinc nanoparticles was evaluated using various characterization techniques. The UV-visible absorption spectra shows the characteristic maximum absorption at 379 nm, which confirmed its narrow size distribution and mono-dispersed nanoparticles. The SEM analysis confirmed that the particles were more or less spherical in shape with rough surfaces having the particle size in the range of 54 nm to 97 nm. The EDS analysis confirmed the presence of zinc at 8.61 keV (Kα) and 1.09 keV (Lα), whereas the XRD spectra shows the 2θ characteristic peaks corresponds to planes as same as the crystal lattice structure. The biosynthesized ZnO nanoparticles have excellent tendency to degrade methyl orange and crystal violet dyes, which was achieved within 2 h.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Shahid, C. Dumat, S. Khalid, E. Schreck, T. Xiong and N.K. Niazi, J. Hazard. Mater., 325, 36 (2017); https://doi.org/10.1016/j.jhazmat.2016.11.063
- K. Pal, S. Chakroborty and N. Nath, Green Process. Synth., 11, 951 (2022); https://doi.org/10.1515/gps-2022-0081
- S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/c1gc15386b
- H. Agarwal, S. Venkat Kumar and S. Rajeshkumar, Resource-Effic. Technol., 3, 406 (2017); https://doi.org/10.1016/j.reffit.2017.03.002
- J. Pulit-Prociak, J. Chwastowski, A. Kucharski and M. Banach, Appl. Surf. Sci., 385, 543 (2016); https://doi.org/10.1016/j.apsusc.2016.05.167
- S.V. Gudkov, D.E. Burmistrov, D.A. Serov, M.B. Rebezov, A.A. Semenova and A.B. Lisitsyn, Front. Phys., 9, 641481 (2021); https://doi.org/10.3389/fphy.2021.641481
- S. Raha and M. Ahmaruzzaman, Nanoscale Adv., 4, 1868 (2022); https://doi.org/10.1039/D1NA00880C
- J. Jiang, J. Pi and J. Cai, Bioinorg. Chem. Appl., 2018, 1062562 (2018); https://doi.org/10.1155/2018/1062562
- H. Agarwal, S.V. Kumar and S. Rajeshkumar, Resource-Efficient Technol., 3, 406 (2017); https://doi.org/10.1016/j.reffit.2017.03.002
- V. Batra, I. Kaur, D. Pathania, Sonu and V. Chaudhary, Appl. Surf. Sci. Adv., 11, 100314 (2022); https://doi.org/10.1016/j.apsadv.2022.100314
- P.C. Nagajyothi, S.V. Prabhakar Vattikuti, K.C. Devarayapalli, K. Yoo, J. Shim and T. V. M. Sreekanth, Crit. Rev. Environ. Sci. Technol., 50, 2617 (2020); https://doi.org/10.1080/10643389.2019.1705103
- L. Dong, L. Han, T. Duan, S. Lin, J. Li and X. Liu, RSC Adv., 10, 2027 (2020); https://doi.org/10.1039/C9RA07799E
- S.W. Balogun, O.O. James, Y.K. Sanusi and O.H. Olayinka, SN Appl. Sci., 2, 504 (2020); https://doi.org/10.1007/s42452-020-2127-3
- S.-Y. Pung, W.-P. Lee and A. Aziz, Int. J. Inorg. Chem., 2012, 608183 (2012); https://doi.org/10.1155/2012/608183
References
M. Shahid, C. Dumat, S. Khalid, E. Schreck, T. Xiong and N.K. Niazi, J. Hazard. Mater., 325, 36 (2017); https://doi.org/10.1016/j.jhazmat.2016.11.063
K. Pal, S. Chakroborty and N. Nath, Green Process. Synth., 11, 951 (2022); https://doi.org/10.1515/gps-2022-0081
S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/c1gc15386b
H. Agarwal, S. Venkat Kumar and S. Rajeshkumar, Resource-Effic. Technol., 3, 406 (2017); https://doi.org/10.1016/j.reffit.2017.03.002
J. Pulit-Prociak, J. Chwastowski, A. Kucharski and M. Banach, Appl. Surf. Sci., 385, 543 (2016); https://doi.org/10.1016/j.apsusc.2016.05.167
S.V. Gudkov, D.E. Burmistrov, D.A. Serov, M.B. Rebezov, A.A. Semenova and A.B. Lisitsyn, Front. Phys., 9, 641481 (2021); https://doi.org/10.3389/fphy.2021.641481
S. Raha and M. Ahmaruzzaman, Nanoscale Adv., 4, 1868 (2022); https://doi.org/10.1039/D1NA00880C
J. Jiang, J. Pi and J. Cai, Bioinorg. Chem. Appl., 2018, 1062562 (2018); https://doi.org/10.1155/2018/1062562
H. Agarwal, S.V. Kumar and S. Rajeshkumar, Resource-Efficient Technol., 3, 406 (2017); https://doi.org/10.1016/j.reffit.2017.03.002
V. Batra, I. Kaur, D. Pathania, Sonu and V. Chaudhary, Appl. Surf. Sci. Adv., 11, 100314 (2022); https://doi.org/10.1016/j.apsadv.2022.100314
P.C. Nagajyothi, S.V. Prabhakar Vattikuti, K.C. Devarayapalli, K. Yoo, J. Shim and T. V. M. Sreekanth, Crit. Rev. Environ. Sci. Technol., 50, 2617 (2020); https://doi.org/10.1080/10643389.2019.1705103
L. Dong, L. Han, T. Duan, S. Lin, J. Li and X. Liu, RSC Adv., 10, 2027 (2020); https://doi.org/10.1039/C9RA07799E
S.W. Balogun, O.O. James, Y.K. Sanusi and O.H. Olayinka, SN Appl. Sci., 2, 504 (2020); https://doi.org/10.1007/s42452-020-2127-3
S.-Y. Pung, W.-P. Lee and A. Aziz, Int. J. Inorg. Chem., 2012, 608183 (2012); https://doi.org/10.1155/2012/608183