Copyright (c) 2023 Davron Eshtursunov
This work is licensed under a Creative Commons Attribution 4.0 International License.
Removal of Rhodamine B from Wastewater by Adsorption using Iron Oxide-Polymer Composite Material
Corresponding Author(s) : Davron Eshtursunov
Asian Journal of Chemistry,
Vol. 36 No. 1 (2024): Vol 36 Issue 1, 2024
Abstract
The discharge of dye-containing wastewater from textile, paper and plastic industries poses serious environmental pollution hazards. This study investigates the potential application of an ion exchange material-iron oxide composite to remove rhodamine B dye from aqueous solutions. The composite was synthesized by incorporating iron oxide nanoparticles into a cationic ion exchange matrix containing amine groups with high affinity for rhodamine B dye. Batch adsorption experiments were conducted under controlled pH, temperature and initial rhodamine B dye concentrations. The results demonstrate that the composite material can effectively remove rhodamine B dye, with adsorption capacities reaching 23570.4 mg/g and removal efficiencies over 90% under the optimal conditions at pH 7 and 30 ºC. The adsorption followed pseudo-second order kinetics indicating chemisorption as the main mechanism. The findings suggested that this composite material can serve as an efficient and low-cost adsorbent for removing cationic dyes like rhodamine B dye from textile and other industrial wastewaters due to its high capacity, rapid adsorption rate and magnetic properties that enable easy separation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.A. Yaseen and M. Scholz, Int. J. Environ. Sci. Technol., 16, 1193 (2019); https://doi.org/10.1007/s13762-018-2130-z
- G. Ravindiran, P. Sugumar and G. Elias, Adv. Mater. Sci. Eng., 2021, 6397137 (2021); https://doi.org/10.1155/2021/6397137
- J. Sharma, S. Sharma and V. Soni, Region. Stud. Marine Sci., 45, 101802 (2021); https://doi.org/10.1016/j.rsma.2021.101802
- G. Bal and A. Thakur, Mater. Today Proc., 50, 1575 (2022); https://doi.org/10.1016/j.matpr.2021.09.119
- D.J. Dire and J.A. Wilkinson, J. Toxicol. Clin. Toxicol., 25, 603 (1987); https://doi.org/10.3109/15563658708992660
- S. Dutta, B. Gupta, S.K. Srivastava and A.K. Gupta, Mater. Adv., 2, 4497 (2021); https://doi.org/10.1039/D1MA00354B
- E. Saputra, S. Muhammad, H. Sun and S. Wang, RSC Adv., 3, 21905 (2013); https://doi.org/10.1039/c3ra42455c
- G. Crini, E. Lichtfouse, L. Wilson and N. Morin-Crini, Environ. Chem. Lett., 17, 195 (2019); https://doi.org/10.1007/s10311-018-0786-8ff
- J.-Y. Hwang, A. Nish, J. Doig, S. Douven, C.-W. Chen, L.-C. Chen and R.J. Nicholas, J. Am. Chem. Soc., 130, 3543 (2008); https://doi.org/10.1021/ja0777640
- G. Becskereki, G. Horvai and B. Tóth, Polymers, 13, 1781 (2021); https://doi.org/10.3390/polym13111781
- H. Chaudhuri, S. Dash and A. Sarkar, J. Porous Mater., 23, 1227 (2016); https://doi.org/10.1007/s10934-016-0181-4
- G. Torgut and K. Demirelli, Arab. J. Sci. Eng., 43, 3503 (2018); https://doi.org/10.1007/s13369-017-2947-7
- M. Mukhamediev and D.Z. Bekchanov, Russ. J. Appl. Chem., 92, 1499 (2019); https://doi.org/10.1134/S1070427219110053
- M. Mukhamediev, D.Z. Bekchanov, M.M. Juraev, P. Lieberzeit and D.A. Gafurova, Russ. J. Appl. Chem., 94, 1594 (2021); https://doi.org/10.1134/S1070427221120041
- P. Lieberzeit, D. Bekchanov and M. Mukhamediev, Polym. Adv. Technol., 33, 1809 (2022); https://doi.org/10.1002/pat.5656
- E. Jimenez-Relinque, S.F. Lee, L. Plaza and M. Castellote, Environ. Sci. Pollut. Res. Int., 29, 39712 (2022); https://doi.org/10.1007/s11356-022-18728-8
- A.G. Bracamonte, in eds.: A.E. Shalan, A.S.H. Makhlouf and S. LancerosMéndez, Design of new High Energy near Field Nanophotonic materials for Far Field applications, In: Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications, Engineering Materials, Springer, Cham, pp. 859-920 (2022).
- Y. Liu, Y. Huang, A. Xiao, H. Qiu and L. Liu, Nanomaterials, 9, 51 (2019); https://doi.org/10.3390/nano9010051
- A. Jahanbakhsh, S. Pirsa and M. Bahram, Main Group Chem., 16, 85 (2017); https://doi.org/10.3233/MGC-170228
- D. Chen, T. Awut, B. Liu, Y. Ma, T. Wang and I. Nurulla, E-Polymers, 16, 313 (2016); https://doi.org/10.1515/epoly-2016-0043
- N.M. Mahmoodi, M. Taghizadeh, A. Taghizadeh, J. Abdi, B. Hayati and A.A. Shekarchi, Appl. Surf. Sci., 480, 288 (2019); https://doi.org/10.1016/j.apsusc.2019.02.211
- M. Sun, P. Li, X. Jin, X. Ju, W. Yan, J. Yuan and C. Xing, Food Agric. Immunol., 29, 1053 (2018); https://doi.org/10.1080/09540105.2018.1509946
- D. Bekchanov, M. Mukhamediev, P. Lieberzeit, G. Babojonova and S. Botirov, Polym. Adv. Technol., 32, 3995 (2021); https://doi.org/10.1002/pat.5403
- D. Bekchanov, M. Mukhamediev, G. Babojonova, P. Lieberzeit and X. Su, Research Square Preprint (2022); https://doi.org/10.21203/rs.3.rs-2060870/v1
- L. AhmadianAlam and H. Mahdavi, Polym. Adv. Technol., 29, 2287 (2018); https://doi.org/10.1002/pat.4340
- H.H.P. Yiu, S.C McBain, Z.A.D. Lethbridge, M.R. Lees and J. Dobson, 92, 386 (2010); https://doi.org/10.1002/jbm.a.32363
- Y. Liu, T. Li, X. Shen, Y. Chen, C. Zhang, J. Yan, H. Yang, C. Wu and H. Zeng, Int. J. Nanomedicine, 2015, 4279 (2015); https://doi.org/10.2147/IJN.S85095
- P. Panta and C. Bergmann, J. Mater. Sci. Eng., 5, 4 (2015); https://doi.org/10.4172/2169-0022.1000217.
- K. Kannan, J. Mukherjee and M.N. Gupta, Sci. Adv. Mater., 5, 1 (2013); https://doi.org/10.1166/sam.2013.1608
- E.C. Lima, M.A. Adebayo and F.M. Machado, Eds.: C.P. Bergmann and F.M. Machado, Kinetic and Equilibrium Models of Adsorption in CarbonNanomaterials as Adsorbents for Environmental and Biological Applications, Springer, Chap. 3, pp. 33-69 (2015).
- R.K. Khamizov, D.A. Sveshnikova, A.E. Kucherova and L.A. Sinyaeva, Russ. J. Phys. Chem. A. Focus Chem., 92, 1782 (2018); https://doi.org/10.1134/S0036024418090121
- A.O. Dada, F.A. Adekola, E.O. Odebunmi, A.A. Inyinbor, B.A. Akinyemi and I.D. Adesewa, J. Phys.: Conf. Ser., 1299, 012106 (2019); https://doi.org/10.1088/1742-6596/1299/1/012106
- M. Khoobi, T.M. Delshad, M. Vosooghi, M. Alipour, H. Hamadi, E. Alipour, M.P. Hamedani, S.E. Sadat ebrahimi, Z. Safaei, A. Foroumadi and A. Shafiee, J. Magn. Magn. Mater., 375, 217 (2015); https://doi.org/10.1016/j.jmmm.2014.09.044
- R. Ghibate, O. Senhaji and R. Taouil, Case Studies Chem. Environ. Eng., 3, 100078 (2021); https://doi.org/10.1016/j.cscee.2020.100078
References
D.A. Yaseen and M. Scholz, Int. J. Environ. Sci. Technol., 16, 1193 (2019); https://doi.org/10.1007/s13762-018-2130-z
G. Ravindiran, P. Sugumar and G. Elias, Adv. Mater. Sci. Eng., 2021, 6397137 (2021); https://doi.org/10.1155/2021/6397137
J. Sharma, S. Sharma and V. Soni, Region. Stud. Marine Sci., 45, 101802 (2021); https://doi.org/10.1016/j.rsma.2021.101802
G. Bal and A. Thakur, Mater. Today Proc., 50, 1575 (2022); https://doi.org/10.1016/j.matpr.2021.09.119
D.J. Dire and J.A. Wilkinson, J. Toxicol. Clin. Toxicol., 25, 603 (1987); https://doi.org/10.3109/15563658708992660
S. Dutta, B. Gupta, S.K. Srivastava and A.K. Gupta, Mater. Adv., 2, 4497 (2021); https://doi.org/10.1039/D1MA00354B
E. Saputra, S. Muhammad, H. Sun and S. Wang, RSC Adv., 3, 21905 (2013); https://doi.org/10.1039/c3ra42455c
G. Crini, E. Lichtfouse, L. Wilson and N. Morin-Crini, Environ. Chem. Lett., 17, 195 (2019); https://doi.org/10.1007/s10311-018-0786-8ff
J.-Y. Hwang, A. Nish, J. Doig, S. Douven, C.-W. Chen, L.-C. Chen and R.J. Nicholas, J. Am. Chem. Soc., 130, 3543 (2008); https://doi.org/10.1021/ja0777640
G. Becskereki, G. Horvai and B. Tóth, Polymers, 13, 1781 (2021); https://doi.org/10.3390/polym13111781
H. Chaudhuri, S. Dash and A. Sarkar, J. Porous Mater., 23, 1227 (2016); https://doi.org/10.1007/s10934-016-0181-4
G. Torgut and K. Demirelli, Arab. J. Sci. Eng., 43, 3503 (2018); https://doi.org/10.1007/s13369-017-2947-7
M. Mukhamediev and D.Z. Bekchanov, Russ. J. Appl. Chem., 92, 1499 (2019); https://doi.org/10.1134/S1070427219110053
M. Mukhamediev, D.Z. Bekchanov, M.M. Juraev, P. Lieberzeit and D.A. Gafurova, Russ. J. Appl. Chem., 94, 1594 (2021); https://doi.org/10.1134/S1070427221120041
P. Lieberzeit, D. Bekchanov and M. Mukhamediev, Polym. Adv. Technol., 33, 1809 (2022); https://doi.org/10.1002/pat.5656
E. Jimenez-Relinque, S.F. Lee, L. Plaza and M. Castellote, Environ. Sci. Pollut. Res. Int., 29, 39712 (2022); https://doi.org/10.1007/s11356-022-18728-8
A.G. Bracamonte, in eds.: A.E. Shalan, A.S.H. Makhlouf and S. LancerosMéndez, Design of new High Energy near Field Nanophotonic materials for Far Field applications, In: Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications, Engineering Materials, Springer, Cham, pp. 859-920 (2022).
Y. Liu, Y. Huang, A. Xiao, H. Qiu and L. Liu, Nanomaterials, 9, 51 (2019); https://doi.org/10.3390/nano9010051
A. Jahanbakhsh, S. Pirsa and M. Bahram, Main Group Chem., 16, 85 (2017); https://doi.org/10.3233/MGC-170228
D. Chen, T. Awut, B. Liu, Y. Ma, T. Wang and I. Nurulla, E-Polymers, 16, 313 (2016); https://doi.org/10.1515/epoly-2016-0043
N.M. Mahmoodi, M. Taghizadeh, A. Taghizadeh, J. Abdi, B. Hayati and A.A. Shekarchi, Appl. Surf. Sci., 480, 288 (2019); https://doi.org/10.1016/j.apsusc.2019.02.211
M. Sun, P. Li, X. Jin, X. Ju, W. Yan, J. Yuan and C. Xing, Food Agric. Immunol., 29, 1053 (2018); https://doi.org/10.1080/09540105.2018.1509946
D. Bekchanov, M. Mukhamediev, P. Lieberzeit, G. Babojonova and S. Botirov, Polym. Adv. Technol., 32, 3995 (2021); https://doi.org/10.1002/pat.5403
D. Bekchanov, M. Mukhamediev, G. Babojonova, P. Lieberzeit and X. Su, Research Square Preprint (2022); https://doi.org/10.21203/rs.3.rs-2060870/v1
L. AhmadianAlam and H. Mahdavi, Polym. Adv. Technol., 29, 2287 (2018); https://doi.org/10.1002/pat.4340
H.H.P. Yiu, S.C McBain, Z.A.D. Lethbridge, M.R. Lees and J. Dobson, 92, 386 (2010); https://doi.org/10.1002/jbm.a.32363
Y. Liu, T. Li, X. Shen, Y. Chen, C. Zhang, J. Yan, H. Yang, C. Wu and H. Zeng, Int. J. Nanomedicine, 2015, 4279 (2015); https://doi.org/10.2147/IJN.S85095
P. Panta and C. Bergmann, J. Mater. Sci. Eng., 5, 4 (2015); https://doi.org/10.4172/2169-0022.1000217.
K. Kannan, J. Mukherjee and M.N. Gupta, Sci. Adv. Mater., 5, 1 (2013); https://doi.org/10.1166/sam.2013.1608
E.C. Lima, M.A. Adebayo and F.M. Machado, Eds.: C.P. Bergmann and F.M. Machado, Kinetic and Equilibrium Models of Adsorption in CarbonNanomaterials as Adsorbents for Environmental and Biological Applications, Springer, Chap. 3, pp. 33-69 (2015).
R.K. Khamizov, D.A. Sveshnikova, A.E. Kucherova and L.A. Sinyaeva, Russ. J. Phys. Chem. A. Focus Chem., 92, 1782 (2018); https://doi.org/10.1134/S0036024418090121
A.O. Dada, F.A. Adekola, E.O. Odebunmi, A.A. Inyinbor, B.A. Akinyemi and I.D. Adesewa, J. Phys.: Conf. Ser., 1299, 012106 (2019); https://doi.org/10.1088/1742-6596/1299/1/012106
M. Khoobi, T.M. Delshad, M. Vosooghi, M. Alipour, H. Hamadi, E. Alipour, M.P. Hamedani, S.E. Sadat ebrahimi, Z. Safaei, A. Foroumadi and A. Shafiee, J. Magn. Magn. Mater., 375, 217 (2015); https://doi.org/10.1016/j.jmmm.2014.09.044
R. Ghibate, O. Senhaji and R. Taouil, Case Studies Chem. Environ. Eng., 3, 100078 (2021); https://doi.org/10.1016/j.cscee.2020.100078