Copyright (c) 2023 Mongkol Nontakitticharoen, Thidathep Mahaamnart, Siripit Pitchuanchom, Thanaset Senawong, Surapon Saensouk
This work is licensed under a Creative Commons Attribution 4.0 International License.
Cytotoxicity and Molecular Docking to Histone Deacetylase of Phytochemicals from Ventilago denticulata Leaves
Corresponding Author(s) : Mongkol Nontakitticharoen
Asian Journal of Chemistry,
Vol. 36 No. 1 (2024): Vol 36 Issue 1, 2024
Abstract
Phytochemical investigation of the ethyl acetate and methanol extracts of Ventilago denticulata leaves resulted in the isolation of five flavonoids (1-5) and three anthraquinones (6-8). Their structures were characterized using spectroscopic techniques including UV, IR, 1H NMR, 13C NMR, and 2D NMR, as well as mass spectrometry (MS). Among these, compounds 4 (rhamnetin) and 6 (frangulin B) emerged as potential HDAC inhibitors, displaying significant inhibitory activities against HeLa nuclear extract. Molecular docking with HDAC isoforms revealed their affinity, particularly for class II HDAC4 enzyme. Both compounds exhibited promising physicochemical properties compliant with Lipinski’s rule of five, indicative of their drug-like potential. In vitro antiproliferative assays demonstrated that compound 6 exhibited superior activity against HeLa, A549 and MCF-7 cancer cell lines with the IC50 values ranging from 8.35 to 20.93 mM, whereas compound 4 showed reduced cytotoxicity in non-cancerous Vero cells. Furthermore, compound 6 was isolated from V. denticulata for the first time.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Bouyahya, N. El Hachlafi, T. Aanniz, I. Bourais, H. Mechchate, T. Benali, M.A. Shariati, P. Burkov, J.M. Lorenzo, P. Wilairatana, M S. Mubarak and N.E. Omari, Molecules, 27, 2568 (2022); https://10.3390/molecules27082568
- M. Daœko, B. de Pascual-Teresa, I. Ortín and A. Ramos, Molecules, 27, 715 (2022); https://doi.org/10.3390/molecules27030715
- A. Pongjanta, K. Pangjit and S. Srichairatanakul, J. Med. Assoc. Thai., 99, S51 (2016).
- W. Molee, A. Phanumartwiwath, C. Kesornpun, N. Ngamrojanavanich, S. Surerum, K. Ingkaninan, C. Mahidol, S. Ruchirawat and P. Kittakoop, Chem. Biodivers., 15, e1700537 (2018); https://doi.org/10.1002/cbdv.201700537
- B.K. Rao, T. Hanumaiah, C.P. Rao, G.R. Rao and K.J. Rao, Phytochem., 22, 2583 (1983); https://doi.org/10.1016/0031-9422(83)80170-8
- B.K. Rao, T. Hanumaiah, J.U.M. Rao, K.V.J. Rao and R.H. Thomson, Phytochem., 23, 2104 (1984); https://doi.org/10.1016/S0031-9422(00)84996-1
- N. Lomchoey, J. Nontakham, P. Suebsakwong and S. Suksamran, KKU Sci. J., 45, 701 (2017).
- M. Azizah, P. Pripdeevech, T. Thongkongkaew, C. Mahidol, S. Ruchirawat and P. Kittakoop, Antibiotics, 9, 606 (2020); https://doi.org/10.3390/antibiotics9090606
- N. Hangsamai, T. Mahaamnart, S. Kanokmedhakul, K. Kanokmedhakul, K. Photai, T. Senawong, S. Pitchuanchom and M. Nontakitticharoen, Molecules, 27, 1088 (2022); https://doi.org/10.3390/molecules27031088
- C.J. Millard, P.J. Watson, I. Celardo, Y. Gordiyenko, S.M. Cowley, C.V. Robinson, L. Fairall and J.W.R. Schwabe, Mol.Cell., 51, 57 (2013); https://10.1016/j.molcel.2013.05.020
- J.C. Bressi, A.J. Jennings, R. Skene, Y. Wu, R. Melkus, E.D. Jong, S. O’Connell, C.E. Grimshaw, M. Navre and A.R. Gangloff, Bioorg. Med. Chem. Lett., 20, 3142 (2010); https://10.1016/j.bmcl.2010.03.091
- M.J. Bottomley, P.L. Surdo, P.D. Giovine, A. Cirillo, R. Scarpelli, F. Ferrigno, P. Jones, P. Neddermann, R.D. Francesco, C. Steinkühler, P. Gallinari and A. Carfí, J. Biol. Chem., 283, 26694 (2008); https://10.1074/jbc.M803514200
- A. Schuetz, J. Min, A. Allali-Hassani, M. Schapira, M. Shuen, P. Loppnau, R. Mazitschek, N.P. Kwiatkowski, T.A. Lewis, R.L. Maglathin, T.H. McLean, A. Bochkarev, A.N. Plotnikov, M. Vedadi and C.H. Arrowsmith, J. Biol. Chem., 283, 11355 (2008); https://10.1074/jbc.M707362200
- J.R. Somoza, R.J. Skene, B.A. Katz, C. Mol, J.D. Ho, A.J. Jennings, C. Luong, A. Arvai, J.J. Buggy, E. Chi, J. Tang, B.C. Sang, E. Verner, R. Wynands, E.M. Leahy, D.R. Dougan, G. Snell, M. Navre, K.W. Knuth, R.V. Swanson, D.E. McRee and L.W. Tari, Structure, 12, 1325 (2004); https://10.1016/j.str.2004.04.012
- S.J. Weiner, P.A. Kollman, D.A. Case, U.C. Singh, C. Ghio, G. Alahona, S. Profeta and P.A. Weiner, J. Am. Chem. Soc., 106, 765 (1984); https://doi.org/10.1021/ja00315a051
- G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew and A.J. Olson, J. Comput. Chem., 19, 1639 (1998); https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
- G.M. Morris, D. S. Goodsell, R. Huey and A.J. Olson, J. Comput. Aided Mol. Des., 10, 293 (1996); https://10.1007/BF00124499
- A. Daina, O. Michielin and V. Zoete, Sci Rep., 7, 42717 (2017); https://10.1038/srep42717
- J. Si, D. Chen, Q. Chang, L. Shen and Z. Zhu, Acta Bot. Sin., 36, 239 (1994).
- M.M. Salem, S.R. Hussein, R. Sharawy, A. Khateeb, E.A. Ragab, K.M. Dawood and S. Negoumy, Egypt. Pharma. J., 15, 1 (2016); https://10.4103/1687-4315.184025
- H. Itokawa, K. Suto and K. Takeya, Chem. Pharm. Bull., 29, 254 (1981); https://doi.org/10.1248/cpb.29.254
- E.J. Lee, B.H. Moon, Y. Park, S.W. Hong, S.H. Lee and Y.G. Lee, Bull. Korean Chem. Soc., 29, 507 (2008); https://doi.org/10.5012/bkcs.2008.29.2.507
- G.W. Francis, D. Aksnes and Ø. Holt, Magn. Reson. Chem., 36, 769 (1998); https://doi.org/10.1002/(SICI)1097 458X(1998100)36:10<769::AIDOMR361>3.0.CO;2-E
- A.K. Khalil, K.M. Akter, H.J. Kim, W.S. Park, D. M. Kang, K.A. Koo and M.J. Ahn, Plants, 9, 222 (2020); https://doi.org/10.3390/plants9020222
References
A. Bouyahya, N. El Hachlafi, T. Aanniz, I. Bourais, H. Mechchate, T. Benali, M.A. Shariati, P. Burkov, J.M. Lorenzo, P. Wilairatana, M S. Mubarak and N.E. Omari, Molecules, 27, 2568 (2022); https://10.3390/molecules27082568
M. Daœko, B. de Pascual-Teresa, I. Ortín and A. Ramos, Molecules, 27, 715 (2022); https://doi.org/10.3390/molecules27030715
A. Pongjanta, K. Pangjit and S. Srichairatanakul, J. Med. Assoc. Thai., 99, S51 (2016).
W. Molee, A. Phanumartwiwath, C. Kesornpun, N. Ngamrojanavanich, S. Surerum, K. Ingkaninan, C. Mahidol, S. Ruchirawat and P. Kittakoop, Chem. Biodivers., 15, e1700537 (2018); https://doi.org/10.1002/cbdv.201700537
B.K. Rao, T. Hanumaiah, C.P. Rao, G.R. Rao and K.J. Rao, Phytochem., 22, 2583 (1983); https://doi.org/10.1016/0031-9422(83)80170-8
B.K. Rao, T. Hanumaiah, J.U.M. Rao, K.V.J. Rao and R.H. Thomson, Phytochem., 23, 2104 (1984); https://doi.org/10.1016/S0031-9422(00)84996-1
N. Lomchoey, J. Nontakham, P. Suebsakwong and S. Suksamran, KKU Sci. J., 45, 701 (2017).
M. Azizah, P. Pripdeevech, T. Thongkongkaew, C. Mahidol, S. Ruchirawat and P. Kittakoop, Antibiotics, 9, 606 (2020); https://doi.org/10.3390/antibiotics9090606
N. Hangsamai, T. Mahaamnart, S. Kanokmedhakul, K. Kanokmedhakul, K. Photai, T. Senawong, S. Pitchuanchom and M. Nontakitticharoen, Molecules, 27, 1088 (2022); https://doi.org/10.3390/molecules27031088
C.J. Millard, P.J. Watson, I. Celardo, Y. Gordiyenko, S.M. Cowley, C.V. Robinson, L. Fairall and J.W.R. Schwabe, Mol.Cell., 51, 57 (2013); https://10.1016/j.molcel.2013.05.020
J.C. Bressi, A.J. Jennings, R. Skene, Y. Wu, R. Melkus, E.D. Jong, S. O’Connell, C.E. Grimshaw, M. Navre and A.R. Gangloff, Bioorg. Med. Chem. Lett., 20, 3142 (2010); https://10.1016/j.bmcl.2010.03.091
M.J. Bottomley, P.L. Surdo, P.D. Giovine, A. Cirillo, R. Scarpelli, F. Ferrigno, P. Jones, P. Neddermann, R.D. Francesco, C. Steinkühler, P. Gallinari and A. Carfí, J. Biol. Chem., 283, 26694 (2008); https://10.1074/jbc.M803514200
A. Schuetz, J. Min, A. Allali-Hassani, M. Schapira, M. Shuen, P. Loppnau, R. Mazitschek, N.P. Kwiatkowski, T.A. Lewis, R.L. Maglathin, T.H. McLean, A. Bochkarev, A.N. Plotnikov, M. Vedadi and C.H. Arrowsmith, J. Biol. Chem., 283, 11355 (2008); https://10.1074/jbc.M707362200
J.R. Somoza, R.J. Skene, B.A. Katz, C. Mol, J.D. Ho, A.J. Jennings, C. Luong, A. Arvai, J.J. Buggy, E. Chi, J. Tang, B.C. Sang, E. Verner, R. Wynands, E.M. Leahy, D.R. Dougan, G. Snell, M. Navre, K.W. Knuth, R.V. Swanson, D.E. McRee and L.W. Tari, Structure, 12, 1325 (2004); https://10.1016/j.str.2004.04.012
S.J. Weiner, P.A. Kollman, D.A. Case, U.C. Singh, C. Ghio, G. Alahona, S. Profeta and P.A. Weiner, J. Am. Chem. Soc., 106, 765 (1984); https://doi.org/10.1021/ja00315a051
G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew and A.J. Olson, J. Comput. Chem., 19, 1639 (1998); https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
G.M. Morris, D. S. Goodsell, R. Huey and A.J. Olson, J. Comput. Aided Mol. Des., 10, 293 (1996); https://10.1007/BF00124499
A. Daina, O. Michielin and V. Zoete, Sci Rep., 7, 42717 (2017); https://10.1038/srep42717
J. Si, D. Chen, Q. Chang, L. Shen and Z. Zhu, Acta Bot. Sin., 36, 239 (1994).
M.M. Salem, S.R. Hussein, R. Sharawy, A. Khateeb, E.A. Ragab, K.M. Dawood and S. Negoumy, Egypt. Pharma. J., 15, 1 (2016); https://10.4103/1687-4315.184025
H. Itokawa, K. Suto and K. Takeya, Chem. Pharm. Bull., 29, 254 (1981); https://doi.org/10.1248/cpb.29.254
E.J. Lee, B.H. Moon, Y. Park, S.W. Hong, S.H. Lee and Y.G. Lee, Bull. Korean Chem. Soc., 29, 507 (2008); https://doi.org/10.5012/bkcs.2008.29.2.507
G.W. Francis, D. Aksnes and Ø. Holt, Magn. Reson. Chem., 36, 769 (1998); https://doi.org/10.1002/(SICI)1097 458X(1998100)36:10<769::AIDOMR361>3.0.CO;2-E
A.K. Khalil, K.M. Akter, H.J. Kim, W.S. Park, D. M. Kang, K.A. Koo and M.J. Ahn, Plants, 9, 222 (2020); https://doi.org/10.3390/plants9020222