Copyright (c) 2023 S.BAKKIALAKSHMI, A.KANIMOZHI
This work is licensed under a Creative Commons Attribution 4.0 International License.
Interaction Mechanism of Hesperidin and L-Tryptophan: A Experimental and Molecular Docking Studies
Corresponding Author(s) : S. Bakkialakshmi
Asian Journal of Chemistry,
Vol. 36 No. 1 (2024): Vol 36 Issue 1, 2024
Abstract
The binding of L-tryptophan (L-Trp) and hesperidin (HES) was investigated by UV, fluorescence, synchronous fluorescence, time-resolved fluorescence, Fourier transform infrared (FTIR) spectroscopies, FRET, antibacterial activity, anticancer activity and molecular docking study. The flavonoid glycoside known as hesperidin has been shown to have therapeutic properties for a variety of disorders, including cancer diseases. Its low solubility and bioavailability cause it to be little absorbed, which means that a delivery mechanism is necessary in order for it to reach its therapeutic goal. Fluorescence data revealed that the fluorescence quenching mechanisms of L Trp by hesperidin are all static quenching procedures. Synchronous fluorescence spectroscopy shows the interaction between hesperidin and L-Trp changes the hydrophobicity of the microenvironment of tryptophan (Trp) residues. The anticancer activity effect of hesperidin and L-Trp on human cervical cancer cell lines was assessed using MTT and crystal violet assays.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.L. Desai, K. Bhatt, K.M. Modi, N.P. Patel, M. Panchal, A. Kongor, C.N. Patel and A. Liška, Chem. Phys., 554, 111426 (2022); https://doi.org/10.1016/j.chemphys.2021.111426
- R.M. Callejón, A.M. Troncoso and M.L. Morales, Talanta, 81, 1143 (2010); https://doi.org/10.1016/j.talanta.2010.02.040
- Q.S. Qu, X.Q. Tang, C.Y. Wang, G.J. Yang, X.Y. Hu, X. Lu, Y. Liu, S.C. Li and C. Yan, Anal. Chim. Acta, 572, 212 (2006); https://doi.org/10.1016/j.aca.2006.05.026
- X.S. Zhu, A.Q. Gong, B.S. Wang and S.H. Yu, J. Lumin., 128, 1815 (2008); https://doi.org/10.1016/j.jlumin.2008.05.002
- F. Wang and W. Huang, J. Pharm. Biomed. Anal., 43, 393 (2007); https://doi.org/10.1016/j.jpba.2006.07.007
- P. Bandyopadhyay and K. Saha, Chem. Phys. Lett., 457, 227 (2008); https://doi.org/10.1016/j.cplett.2008.03.076
- N. Shao, J.Y. Jin, S.M. Cheung, R.H. Yang, W.H. Chan and T. Mo, Angew. Chem. Int. Ed., 45, 4944 (2006); https://doi.org/10.1002/anie.200600112
- X. Yang, Y. Guo and R.M. Strongin, Angew. Chem. Int. Ed., 50, 10690 (2011); https://doi.org/10.1002/anie.201103759
- W. Hao, A. McBride, S. McBride, J.P. Gao and Z.Y. Wang, J. Mater. Chem., 21, 1040 (2011); https://doi.org/10.1039/C0JM02497J
- K. Liu, L. He, X. He, Y. Guo, S. Shao and S. Jiang, Tetrahedron Lett., 48, 4275 (2007); https://doi.org/10.1016/j.tetlet.2007.04.042
- L.D. Li, Z.B. Chen, H.T. Zhao and L. Guo, Biosens. Bioelectron., 26, 2781 (2011); https://doi.org/10.1016/j.bios.2010.10.041
- Y. Shimazaki, T. Yajima, M. Takani and O. Yamauchi, Coord. Chem. Rev., 253, 479 (2009); https://doi.org/10.1016/j.ccr.2008.04.012
- C.X. Tang, N.N. Bu, X.W. He and X.B. Yin, Chem. Commun., 47, 12304 (2011); https://doi.org/10.1039/c1cc15323d
- R.H. McMenamy and J.L. Oncley, J. Biol. Chem., 233, 1436 (1958); https://doi.org/10.1016/S0021-9258(18)49353-2
- R.H. McMenamy, Arch. Biochem. Biophys., 103, 409 (1963); https://doi.org/10.1016/0003-9861(63)90430-2
- R.H. McMenamy, J. Biol. Chem., 239, 2835 (1964); https://doi.org/10.1016/S0021-9258(18)93822-6
- R.H. McMenamy, J. Biol. Chem., 240, 4235 (1965); https://doi.org/10.1016/S0021-9258(18)97049-3
- T.P. King and M. Spencer, J. Biol. Chem., 245, 6134 (1970); https://doi.org/10.1016/S0021-9258(18)62672-9
- G.F. Fairclough Jr. and J.S. Fruton, Biochemistry, 5, 673 (1966); https://doi.org/10.1021/bi00866a038
- J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, Boston, MA, USA, edn. 3 (2006).
- R. Sridharan, J. Zuber, S.M. Connelly, E. Mathew and M.E. Dumont, Biochim. Biophys. Acta Biomembr., 1838, 15 (2014); https://doi.org/10.1016/j.bbamem.2013.09.005
- B.Y. Silber and J.A.J. Schmitt, Neurosci. Biobehav. Rev., 34, 387 (2010); https://doi.org/10.1016/j.neubiorev.2009.08.005
- S. Löb, A. Königsrainer, H.G. Rammensee, G. Opelz and P. Terness, Nat. Rev. Cancer, 9, 445 (2009); https://doi.org/10.1038/nrc2639
- M. Kia, A. Islamnezhad, S. Shariati and P. Biparva, Korean J. Chem. Eng., 28, 2064 (2011); https://doi.org/10.1007/s11814-011-0066-9
- J.W. Longworth, Excited States of Proteins and Nucleic Acids, in eds.: R.F. Steiner and I. Weinry, Excited States of Proteins and Nucleic Acids, Plenum Press: New York, Chap. 6, pp. 319-484 (1971).
- A.M. Myint, Y.K. Kim, R. Verkerk, S. Scharpé, H. Steinbusch and B. Leonard, J. Affect. Disord., 98, 143 (2007); https://doi.org/10.1016/j.jad.2006.07.013
- Y. Yang, J. Wolfram, H. Shen, X. Fang, and M. Ferrari, Eur. J. Med. Chem., 58, 390 (2012); https://doi.org/10.1016/j.ejmech.2012.10.028
- M.S. Antunes, C.R. Jesse, J.R. Ruff, D. de Oliveira Espinosa, N.S. Gomes, E.E.T. Altvater, F. Donato, R. Giacomeli and S.P. Boeira, E.ET, Eur. J. Pharmacol., 789, 411 (2016); https://doi.org/10.1016/j.ejphar.2016.07.042
- V. Gaur and A. Kumar, Pharmacol. Rep., 62, 635 (2010); https://doi.org/10.1016/S1734-1140(10)70321-2
- A. Umeno, M. Horie, K. Murotomi, Y. Nakajima and Y. Yoshida, Molecules, 21, 708 (2016); https://doi.org/10.3390/molecules21060708
- M.S. Antunes, A.T.R. Goes, S.P. Boeira, M. Prigol and C.R. Jesse, Nutrition, 30, 1415 (2014); https://doi.org/10.1016/j.nut.2014.03.024
- W.C. Willett, Science, 296, 695 (2002); https://doi.org/10.1126/science.1071055
- G. Mazza, Ann. Ist. Super. Sanita, 43, 369 (2007).
- A.M. Mahmoud, M.B. Ashour, A. Abdel-Moneim and O.M. Ahmed, J. Diabetes Complications, 26, 483 (2012); https://doi.org/10.1016/j.jdiacomp.2012.06.001
- S.R.K.M. Hewage, M.J. Piao, K.A. Kang, Y.S. Ryu, X. Han, M.C. Oh, U. Jung, I.G. Kim and J.W. Hyun, Biomol. Ther., 24, 312 (2016); https://doi.org/10.4062/biomolther.2015.139
- N. Polat, O. Ciftci, A. Cetin and T. Yilmaz, Cutan. Ocul. Toxicol., 35, 1 (2016); https://doi.org/10.3109/15569527.2014.999080
- X. Yu, Z. Liao, B. Jiang, X. Hu and X. Li, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 129 (2015); https://doi.org/10.1016/j.saa.2014.08.098
- Y.K. Manea, A. Banu, M.T. Qashqoosh, M. Khan, F.M. Alahdal, A.A. Wani and S. Naqvi, Chem. Phys., 546, 111139 (2001); https://doi.org/10.1016/j.chemphys.2021.111139
- X. Fan, S. Liu and Y. He, Colloids Surf. B Biointerfaces, 88, 23 (2011); https://doi.org/10.1016/j.colsurfb.2011.05.029
- B.L. Wang, D.Q. Pan, S.B. Kou, Z.Y. Lin and J.-H. Shi, Chem. Phys., 530, 110641 (2020); https://doi.org/10.1016/j.chemphys.2019.110641
- N. Mani, S. Suresh, M. Govindammal, S. Kannan, E.I. Paulraj, D. Nicksonsebastin and M. Prasath, Chem. Phys. Impact, 7, 100254 (2023); https://doi.org/10.1016/j.chphi.2023.100254
References
A.L. Desai, K. Bhatt, K.M. Modi, N.P. Patel, M. Panchal, A. Kongor, C.N. Patel and A. Liška, Chem. Phys., 554, 111426 (2022); https://doi.org/10.1016/j.chemphys.2021.111426
R.M. Callejón, A.M. Troncoso and M.L. Morales, Talanta, 81, 1143 (2010); https://doi.org/10.1016/j.talanta.2010.02.040
Q.S. Qu, X.Q. Tang, C.Y. Wang, G.J. Yang, X.Y. Hu, X. Lu, Y. Liu, S.C. Li and C. Yan, Anal. Chim. Acta, 572, 212 (2006); https://doi.org/10.1016/j.aca.2006.05.026
X.S. Zhu, A.Q. Gong, B.S. Wang and S.H. Yu, J. Lumin., 128, 1815 (2008); https://doi.org/10.1016/j.jlumin.2008.05.002
F. Wang and W. Huang, J. Pharm. Biomed. Anal., 43, 393 (2007); https://doi.org/10.1016/j.jpba.2006.07.007
P. Bandyopadhyay and K. Saha, Chem. Phys. Lett., 457, 227 (2008); https://doi.org/10.1016/j.cplett.2008.03.076
N. Shao, J.Y. Jin, S.M. Cheung, R.H. Yang, W.H. Chan and T. Mo, Angew. Chem. Int. Ed., 45, 4944 (2006); https://doi.org/10.1002/anie.200600112
X. Yang, Y. Guo and R.M. Strongin, Angew. Chem. Int. Ed., 50, 10690 (2011); https://doi.org/10.1002/anie.201103759
W. Hao, A. McBride, S. McBride, J.P. Gao and Z.Y. Wang, J. Mater. Chem., 21, 1040 (2011); https://doi.org/10.1039/C0JM02497J
K. Liu, L. He, X. He, Y. Guo, S. Shao and S. Jiang, Tetrahedron Lett., 48, 4275 (2007); https://doi.org/10.1016/j.tetlet.2007.04.042
L.D. Li, Z.B. Chen, H.T. Zhao and L. Guo, Biosens. Bioelectron., 26, 2781 (2011); https://doi.org/10.1016/j.bios.2010.10.041
Y. Shimazaki, T. Yajima, M. Takani and O. Yamauchi, Coord. Chem. Rev., 253, 479 (2009); https://doi.org/10.1016/j.ccr.2008.04.012
C.X. Tang, N.N. Bu, X.W. He and X.B. Yin, Chem. Commun., 47, 12304 (2011); https://doi.org/10.1039/c1cc15323d
R.H. McMenamy and J.L. Oncley, J. Biol. Chem., 233, 1436 (1958); https://doi.org/10.1016/S0021-9258(18)49353-2
R.H. McMenamy, Arch. Biochem. Biophys., 103, 409 (1963); https://doi.org/10.1016/0003-9861(63)90430-2
R.H. McMenamy, J. Biol. Chem., 239, 2835 (1964); https://doi.org/10.1016/S0021-9258(18)93822-6
R.H. McMenamy, J. Biol. Chem., 240, 4235 (1965); https://doi.org/10.1016/S0021-9258(18)97049-3
T.P. King and M. Spencer, J. Biol. Chem., 245, 6134 (1970); https://doi.org/10.1016/S0021-9258(18)62672-9
G.F. Fairclough Jr. and J.S. Fruton, Biochemistry, 5, 673 (1966); https://doi.org/10.1021/bi00866a038
J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, Boston, MA, USA, edn. 3 (2006).
R. Sridharan, J. Zuber, S.M. Connelly, E. Mathew and M.E. Dumont, Biochim. Biophys. Acta Biomembr., 1838, 15 (2014); https://doi.org/10.1016/j.bbamem.2013.09.005
B.Y. Silber and J.A.J. Schmitt, Neurosci. Biobehav. Rev., 34, 387 (2010); https://doi.org/10.1016/j.neubiorev.2009.08.005
S. Löb, A. Königsrainer, H.G. Rammensee, G. Opelz and P. Terness, Nat. Rev. Cancer, 9, 445 (2009); https://doi.org/10.1038/nrc2639
M. Kia, A. Islamnezhad, S. Shariati and P. Biparva, Korean J. Chem. Eng., 28, 2064 (2011); https://doi.org/10.1007/s11814-011-0066-9
J.W. Longworth, Excited States of Proteins and Nucleic Acids, in eds.: R.F. Steiner and I. Weinry, Excited States of Proteins and Nucleic Acids, Plenum Press: New York, Chap. 6, pp. 319-484 (1971).
A.M. Myint, Y.K. Kim, R. Verkerk, S. Scharpé, H. Steinbusch and B. Leonard, J. Affect. Disord., 98, 143 (2007); https://doi.org/10.1016/j.jad.2006.07.013
Y. Yang, J. Wolfram, H. Shen, X. Fang, and M. Ferrari, Eur. J. Med. Chem., 58, 390 (2012); https://doi.org/10.1016/j.ejmech.2012.10.028
M.S. Antunes, C.R. Jesse, J.R. Ruff, D. de Oliveira Espinosa, N.S. Gomes, E.E.T. Altvater, F. Donato, R. Giacomeli and S.P. Boeira, E.ET, Eur. J. Pharmacol., 789, 411 (2016); https://doi.org/10.1016/j.ejphar.2016.07.042
V. Gaur and A. Kumar, Pharmacol. Rep., 62, 635 (2010); https://doi.org/10.1016/S1734-1140(10)70321-2
A. Umeno, M. Horie, K. Murotomi, Y. Nakajima and Y. Yoshida, Molecules, 21, 708 (2016); https://doi.org/10.3390/molecules21060708
M.S. Antunes, A.T.R. Goes, S.P. Boeira, M. Prigol and C.R. Jesse, Nutrition, 30, 1415 (2014); https://doi.org/10.1016/j.nut.2014.03.024
W.C. Willett, Science, 296, 695 (2002); https://doi.org/10.1126/science.1071055
G. Mazza, Ann. Ist. Super. Sanita, 43, 369 (2007).
A.M. Mahmoud, M.B. Ashour, A. Abdel-Moneim and O.M. Ahmed, J. Diabetes Complications, 26, 483 (2012); https://doi.org/10.1016/j.jdiacomp.2012.06.001
S.R.K.M. Hewage, M.J. Piao, K.A. Kang, Y.S. Ryu, X. Han, M.C. Oh, U. Jung, I.G. Kim and J.W. Hyun, Biomol. Ther., 24, 312 (2016); https://doi.org/10.4062/biomolther.2015.139
N. Polat, O. Ciftci, A. Cetin and T. Yilmaz, Cutan. Ocul. Toxicol., 35, 1 (2016); https://doi.org/10.3109/15569527.2014.999080
X. Yu, Z. Liao, B. Jiang, X. Hu and X. Li, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 129 (2015); https://doi.org/10.1016/j.saa.2014.08.098
Y.K. Manea, A. Banu, M.T. Qashqoosh, M. Khan, F.M. Alahdal, A.A. Wani and S. Naqvi, Chem. Phys., 546, 111139 (2001); https://doi.org/10.1016/j.chemphys.2021.111139
X. Fan, S. Liu and Y. He, Colloids Surf. B Biointerfaces, 88, 23 (2011); https://doi.org/10.1016/j.colsurfb.2011.05.029
B.L. Wang, D.Q. Pan, S.B. Kou, Z.Y. Lin and J.-H. Shi, Chem. Phys., 530, 110641 (2020); https://doi.org/10.1016/j.chemphys.2019.110641
N. Mani, S. Suresh, M. Govindammal, S. Kannan, E.I. Paulraj, D. Nicksonsebastin and M. Prasath, Chem. Phys. Impact, 7, 100254 (2023); https://doi.org/10.1016/j.chphi.2023.100254