Copyright (c) 2023 Jai Kumar, Jaiveer Singh, Arti Jangra, Keerti Rani, Ramesh Kumar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Trivalent Tetraazamacrocyclic Complexes of Cr(III) and Fe(III): Synthesis, Characterization and Antimicrobial Evaluation
Corresponding Author(s) : R. Kumar
Asian Journal of Chemistry,
Vol. 36 No. 1 (2024): Vol 36 Issue 1, 2024
Abstract
A novel series of macrocyclic compounds, [M(C37H36N4)X]X2; where M = Cr(III) and Fe(III); X = Clˉ, NO3ˉ, CH3COOˉ, have been synthesized by using the template condensation between 3,4-diaminotoluene, dibenzoyl methane and dimedone in the presence of chromium(III) and iron(III). Various physio-chemical studies were used to characterize these complexes including PXRD, magnetic susceptibility, elemental analysis, electronic, IR and mass spectroscopy. These studies suggested that all the metal complexes have a five-coordinated square pyramidal geometry around the metal ion. The molar conductance values of these complexes in the range of 168-140 ohm-1cm2mol-1 indicated the electrolytic nature of these complexes. Furthermore, the antibacterial and antifungal behavior of these complexes was also examined by using different microbial strains i.e. Bacillus subtilis, Escherichia coli and Candida albicans. In addition to this, the results of antibacterial and antifungal of complexes were compared with commercially available antibacterial and antifungal drug i.e. ciprofloxacin and Amphotericin B, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Alka, V.S. Shetti and M. Ravikanth, Coordination Chemistry of Expanded Porphyrins, Coord. Chem. Rev., 401, 213063 (2019); https://doi.org/10.1016/j.ccr.2019.213063
- L. Randaccio, S. Geremia, N. Demitri and J. Wuerges, Molecules, 15, 3228 (2010); https://doi.org/10.3390/molecules15053228
- P.M. Reddy, R. Rohini, E.R. Krishna, A. Hu and V. Ravinder, Int. J. Mol. Sci., 13, 4982 (2012); https://doi.org/10.3390/ijms13044982
- X. Yu and D. Sun, Molecules, 18, 6230 (2013); https://doi.org/10.3390/molecules18066230
- K. Sharma, D.P. Singh and V. Kumar, Indian J. Chem. Technol., 24, 534 (2017).
- H. Ates and M.E. Argun, Water Sci. Technol., 78, 1064 (2018); https://doi.org/10.2166/wst.2018.378
- O. Raymond, W. Henderson, J.R. Lane, P.J. Brothers and P.G. Plieger, J. Coord. Chem., 73, 1 (2020); https://doi.org/10.1080/00958972.2020.1718664
- D.S. Lamani, S.G. Badiger, K.R. Venugopala Reddy and H.S. Bhojya Naik, Nucleosides Nucleotides Nucleic Acids, 37, 498 (2018); https://doi.org/10.1080/15257770.2018.1498515
- Jakub Grajewski, Molecules, 27, 1004 (2022); https://doi.org/10.3390/molecules27031004
- M. Aidi, H. Keypour, A. Shooshtari, M. Bayat, L. Hosseinzadeh, H.A. Rudbari and R.W. Gable, Inorg. Chim. Acta, 490, 294 (2019); https://doi.org/10.1016/j.ica.2018.12.046
- E.C. Judkins, M. Zeller and T. Ren, Inorg. Chem., 57, 2249 (2018); https://doi.org/10.1021/acs.inorgchem.7b03128
- N. Shahabadi, M. Hakimi, T. Morovati and N. Fatahi, Nucleosides Nucleotides Nucleic Acids, 36, 497 (2017); https://doi.org/10.1080/15257770.2017.1332370
- G. Kumar, S. Devi and D. Kumar, J. Mol. Struct., 1108, 680 (2016); https://doi.org/10.1016/j.molstruc.2015.12.059
- A. Kumar, V.K. Vashistha, P. Tevatia and R. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 176, 123 (2017); https://doi.org/10.1016/j.saa.2016.12.011
- S. Chandra, M. Tyagi, S. Rani and S. Kumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 835 (2010); https://doi.org/10.1016/j.saa.2009.12.009
- P. Rathi and D.P. Singh, J. Mol. Struct., 1093, 201 (2015); https://doi.org/10.1016/j.molstruc.2015.03.045
- R.A. Sheikh, M.Y. Wani, S. Shreaz and A.A. Hashmi, Arab. J. Chem., 9, S743 (2016); https://doi.org/10.1016/j.arabjc.2011.08.003
- M. Kamboj, D.P. Singh, A.K. Singh and D. Chaturvedi, J. Mol. Struct., 1207, 127602 (2020); https://doi.org/10.1016/j.molstruc.2019.127602
- P. Rathi and D.P. Singh, J. Mol. Struct., 1100, 208 (2015); https://doi.org/10.1016/j.molstruc.2015.07.025
- A. Boultif and D. Louër, J. Appl. Cryst., 37, 724 (2004); https://doi.org/10.1107/S0021889804014876
- S. Chandra and S. Agrawal, Spectrochim. Acta A Mol. Biomol. Spectrosc., 124, 564 (2014); https://doi.org/10.1016/j.saa.2014.01.042
References
A. Alka, V.S. Shetti and M. Ravikanth, Coordination Chemistry of Expanded Porphyrins, Coord. Chem. Rev., 401, 213063 (2019); https://doi.org/10.1016/j.ccr.2019.213063
L. Randaccio, S. Geremia, N. Demitri and J. Wuerges, Molecules, 15, 3228 (2010); https://doi.org/10.3390/molecules15053228
P.M. Reddy, R. Rohini, E.R. Krishna, A. Hu and V. Ravinder, Int. J. Mol. Sci., 13, 4982 (2012); https://doi.org/10.3390/ijms13044982
X. Yu and D. Sun, Molecules, 18, 6230 (2013); https://doi.org/10.3390/molecules18066230
K. Sharma, D.P. Singh and V. Kumar, Indian J. Chem. Technol., 24, 534 (2017).
H. Ates and M.E. Argun, Water Sci. Technol., 78, 1064 (2018); https://doi.org/10.2166/wst.2018.378
O. Raymond, W. Henderson, J.R. Lane, P.J. Brothers and P.G. Plieger, J. Coord. Chem., 73, 1 (2020); https://doi.org/10.1080/00958972.2020.1718664
D.S. Lamani, S.G. Badiger, K.R. Venugopala Reddy and H.S. Bhojya Naik, Nucleosides Nucleotides Nucleic Acids, 37, 498 (2018); https://doi.org/10.1080/15257770.2018.1498515
Jakub Grajewski, Molecules, 27, 1004 (2022); https://doi.org/10.3390/molecules27031004
M. Aidi, H. Keypour, A. Shooshtari, M. Bayat, L. Hosseinzadeh, H.A. Rudbari and R.W. Gable, Inorg. Chim. Acta, 490, 294 (2019); https://doi.org/10.1016/j.ica.2018.12.046
E.C. Judkins, M. Zeller and T. Ren, Inorg. Chem., 57, 2249 (2018); https://doi.org/10.1021/acs.inorgchem.7b03128
N. Shahabadi, M. Hakimi, T. Morovati and N. Fatahi, Nucleosides Nucleotides Nucleic Acids, 36, 497 (2017); https://doi.org/10.1080/15257770.2017.1332370
G. Kumar, S. Devi and D. Kumar, J. Mol. Struct., 1108, 680 (2016); https://doi.org/10.1016/j.molstruc.2015.12.059
A. Kumar, V.K. Vashistha, P. Tevatia and R. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 176, 123 (2017); https://doi.org/10.1016/j.saa.2016.12.011
S. Chandra, M. Tyagi, S. Rani and S. Kumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 835 (2010); https://doi.org/10.1016/j.saa.2009.12.009
P. Rathi and D.P. Singh, J. Mol. Struct., 1093, 201 (2015); https://doi.org/10.1016/j.molstruc.2015.03.045
R.A. Sheikh, M.Y. Wani, S. Shreaz and A.A. Hashmi, Arab. J. Chem., 9, S743 (2016); https://doi.org/10.1016/j.arabjc.2011.08.003
M. Kamboj, D.P. Singh, A.K. Singh and D. Chaturvedi, J. Mol. Struct., 1207, 127602 (2020); https://doi.org/10.1016/j.molstruc.2019.127602
P. Rathi and D.P. Singh, J. Mol. Struct., 1100, 208 (2015); https://doi.org/10.1016/j.molstruc.2015.07.025
A. Boultif and D. Louër, J. Appl. Cryst., 37, 724 (2004); https://doi.org/10.1107/S0021889804014876
S. Chandra and S. Agrawal, Spectrochim. Acta A Mol. Biomol. Spectrosc., 124, 564 (2014); https://doi.org/10.1016/j.saa.2014.01.042