Copyright (c) 2023 Rajendra Kumar Gunsaria
This work is licensed under a Creative Commons Attribution 4.0 International License.
Alizarin Red S, Oxalic Acid and Cetylpyridinium Chloride-based Modified Photogalvanic Cell with Sustainable Conversion and Storage of Solar Energy
Corresponding Author(s) : Rajendra Kumar Gunsaria
Asian Journal of Chemistry,
Vol. 36 No. 1 (2024): Vol 36 Issue 1, 2024
Abstract
In this study, an integrated photogalvanic system of Alizarin red S, oxalic acid and cetylpyridinium chloride has been fabricated and used for the conversion of solar energy in to electrical energy with improved conversion efficiency and storage capacity. The photogalvanic cell is an H-shaped glass tube cell containing two electrodes dipped in a multifaceted electrolyte solution of dye-reductant-surfactant-alkali. By virtue of its photogalvanic action, it is capable of being charged by sun light. This system by way of variable concentration of chemical components were used to formulate a modified photogalvanic cell. The modified cell indicated significantly improved performance in terms of dark potential (778 mV), open-circuit potential (1189 mV), short-circuit current (420 µA), power (147.42 µW), charging time (17 min), half change time (16 min), conversion efficiency (2.16%) and fill factor (0.299).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Qazi, F. Hussain, N.A.B.D. Rahim, G. Hardaker, D. Alghazzawi, K. Shaban and K. Haruna, IEEE Access, 7, 63837 (2019); https://doi.org/10.1109/ACCESS.2019.2906402
- P.A. Owusu and S. Asumadu-Sarkodie, Cogent Eng., 3, 1167990 (2016); https://doi.org/10.1080/23311916.2016.1167990
- A.O.M. Maka and J.M. Alabid, Clean Energy, 6, 476 (2022); https://doi.org/10.1093/ce/zkac023
- W.D.K. Clark and J.A. Eckert, Sol. Energy, 17, 147 (1975); https://doi.org/10.1016/0038-092X(75)90052-3
- P. Koli, Wiley Interdiscip. Rev. Energy Environ., 7, e274 (2017); https://doi.org/10.1002/wene.274
- M. Grätzel, Nature, 414, 338 (2001); https://doi.org/10.1038/35104607
- A. Malviya and P.P. Solanki, Renew. Sustain. Energy Rev., 59, 662 (2016); https://doi.org/10.1016/j.rser.2015.12.295
- R.K. Gunsaria, S.S. Nadeem and R.N. Meena, J. Chem. Biol. Phys. Sci., 2, 1506 (2012).
- S.S. Nadeem and R.K. Gunsaria, Int. J. Basic Appl. Chem. Sci., 3, 109 (2013).
- R.K. Gunsaria, R.N. Meena and S.S. Nadeem, J. Chem. Biol. Phys. Sci., 3, 929 (2013).
- R.S. Sindal, R.K. Gunsaria, M. Chandra and R.C. Meena, Arab. J. Sci. Eng., 31(2A), 177 (2006).
- P. Koli, R. Kumar, Y. Dayma, R.K. Pareek, A. Meena and M. Jonwal, Battery Energy, 1, 20220011 (2022); https://doi.org/10.1002/bte2.20220011
- P. Koli, Y. Dayma, R.K. Pareek and M. Jonwal, Sci. Rep., 10, 19264 (2020); https://doi.org/10.1038/s41598-020-76388-5
- P. Koli, Arab. J. Chem., 14, 102918 (2021); https://doi.org/10.1016/j.arabjc.2020.102918
- R.K. Gunsaria, K. Chand and R.K. Verma, Int. J. Res. Anal. Rev., 10, 438 (2023).
- P. Koli, R.K. Pareek, Y. Dayma and M. Jonwal, Energy Rep., 7, 3628 (2021); https://doi.org/10.1016/j.egyr.2021.06.022
- R.S. Sindal and R.C. Meena, Int. J. Chem. Sci., 2, 321 (2004).
- S. Yadav and C. Lal, Energy Convers. Manage., 66, 271 (2013); https://doi.org/10.1016/j.enconman.2012.09.011
- K.M. Gangotri and M. Lal, Res. J. Chem. Sci., 3, 20 (2013)
References
A. Qazi, F. Hussain, N.A.B.D. Rahim, G. Hardaker, D. Alghazzawi, K. Shaban and K. Haruna, IEEE Access, 7, 63837 (2019); https://doi.org/10.1109/ACCESS.2019.2906402
P.A. Owusu and S. Asumadu-Sarkodie, Cogent Eng., 3, 1167990 (2016); https://doi.org/10.1080/23311916.2016.1167990
A.O.M. Maka and J.M. Alabid, Clean Energy, 6, 476 (2022); https://doi.org/10.1093/ce/zkac023
W.D.K. Clark and J.A. Eckert, Sol. Energy, 17, 147 (1975); https://doi.org/10.1016/0038-092X(75)90052-3
P. Koli, Wiley Interdiscip. Rev. Energy Environ., 7, e274 (2017); https://doi.org/10.1002/wene.274
M. Grätzel, Nature, 414, 338 (2001); https://doi.org/10.1038/35104607
A. Malviya and P.P. Solanki, Renew. Sustain. Energy Rev., 59, 662 (2016); https://doi.org/10.1016/j.rser.2015.12.295
R.K. Gunsaria, S.S. Nadeem and R.N. Meena, J. Chem. Biol. Phys. Sci., 2, 1506 (2012).
S.S. Nadeem and R.K. Gunsaria, Int. J. Basic Appl. Chem. Sci., 3, 109 (2013).
R.K. Gunsaria, R.N. Meena and S.S. Nadeem, J. Chem. Biol. Phys. Sci., 3, 929 (2013).
R.S. Sindal, R.K. Gunsaria, M. Chandra and R.C. Meena, Arab. J. Sci. Eng., 31(2A), 177 (2006).
P. Koli, R. Kumar, Y. Dayma, R.K. Pareek, A. Meena and M. Jonwal, Battery Energy, 1, 20220011 (2022); https://doi.org/10.1002/bte2.20220011
P. Koli, Y. Dayma, R.K. Pareek and M. Jonwal, Sci. Rep., 10, 19264 (2020); https://doi.org/10.1038/s41598-020-76388-5
P. Koli, Arab. J. Chem., 14, 102918 (2021); https://doi.org/10.1016/j.arabjc.2020.102918
R.K. Gunsaria, K. Chand and R.K. Verma, Int. J. Res. Anal. Rev., 10, 438 (2023).
P. Koli, R.K. Pareek, Y. Dayma and M. Jonwal, Energy Rep., 7, 3628 (2021); https://doi.org/10.1016/j.egyr.2021.06.022
R.S. Sindal and R.C. Meena, Int. J. Chem. Sci., 2, 321 (2004).
S. Yadav and C. Lal, Energy Convers. Manage., 66, 271 (2013); https://doi.org/10.1016/j.enconman.2012.09.011
K.M. Gangotri and M. Lal, Res. J. Chem. Sci., 3, 20 (2013)