Copyright (c) 2023 Obid Tursunmuratov
This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption and Kinetic Studies of Nickel(II) Ions onto Vermiculite based Ionite
Corresponding Author(s) : Obid Tursunmuratov
Asian Journal of Chemistry,
Vol. 36 No. 1 (2024): Vol 36 Issue 1, 2024
Abstract
Using vermiculite based ionite, the absorption efficiencies of Ni2+ ions from synthetic solutions were investigated. The effects of pH and initial concentration of Ni2+ ions their absorption capacity were investigated to optimize process conditions using pseudo-first and pseudo-second-order. The results obtained from the sorption of Ni2+ ions on vermiculite based ionite show the kinetic characteristics close to the pseudo-second order. The high Ni2+ ions sorption is attributed due to the the complexation of metal ions with −NH2 groups present in the absorbent, which results in the strong coordination bonds.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Bekchanov, H. Kawakita, M. Mukhamediev, S. Khushvaktov and M. Juraev, Polym. Adv. Technol., 32, 2700 (2021); https://doi.org/10.1002/pat.5209
- M.G. Mukhamediev and D.Z. Bekchanov, Russ. J. Appl. Chem., 92, 1499 (2019); https://doi.org/10.1134/S1070427219110053
- B.O. Otunola and O.O. Ololade, Environ. Technol. Innov., 18, 100692 (2020); https://doi.org/10.1016/j.eti.2020.100692
- A.G. Olaremu, Chem. Res. J., 6, 157 (2021).
- B. Davron, M. Mukhtar, K. Nurbek, X. Suyun and J. Murod, Int. J. Technol., 11, 794 (2020); https://doi.org/10.14716/ijtech.v11i4.4024
- M.G. Mukhamediev, D.Z. Bekchanov, M.M. Juraev, P. Lieberzeit and D.A. Gafurova, Russ. J. Appl. Chem., 94, 1594 (2021); https://doi.org/10.1134/S1070427221120041
- M. Debure, C. Tournassat, C. Lerouge, B. Made, J.C. Robinet, A.M. Fernandez and S. Grangeon, Sci. Total Environ., 642, 216 (2018); https://doi.org/10.1016/j.scitotenv.2018.06.037
- M. Kotti, A. Papafilippaki, P. Prassa and A. Xirouhaki, Comput. Water, Energy Environ. Eng., 7, 111 2018); https://doi.org/10.4236/cweee.2018.73007
- P. Lieberzeit, D. Bekchanov and M. Mukhamediev, Polym. Adv. Technol., 33, 1809 (2022); https://doi.org/10.1002/pat.5656
- X.L. Su, L.Y. Ma, J.M. Wei and R.L. Zhu, Appl. Clay Sci., 132-133, 261 (2016); https://doi.org/10.1016/j.clay.2016.06.011
- F. Koksal, O. Gencel and M. Kaya, Constr. Build. Mater., 88, 175 (2015); https://doi.org/10.1016/j.conbuildmat.2015.04.021
- D.S. Moraes, E.M.S. Rodrigues, C.N. Lamarao, G.T. Marques and A.F.S. Rente, J. Hazard. Mater., 366, 34 (2019); https://doi.org/10.1016/j.jhazmat.2018.11.086
- A. Wegrzyn, L. Chmielarz, P. Zjezdzalka, A. Kowalczyk, M. Jablonska, X.B. Tolosa and M. Michalik, Acta Geodyn. Geomater., 10, 353 (2013); https://doi.org/10.13168/AGG.2013.0034
- M. Bugarcic, Z. Lopicic, T. Šoštaric, A. Marinkovic, J.D. Rusmirovic, D. Miloševic and M. Milivojevic, J. Environ. Chem. Eng., 9, 106020 (2021); https://doi.org/10.1016/j.jece.2021.106020
- N.C. Das and M. Bandyopadhyay, Water Environ. Res., 64, 852 (1992).
- J. Feng, M. Liu, L. Fu, K. Zhang, Z. Xie, D. Shi and X. Ma, RSC Adv., 10, 7635 (2020); https://doi.org/10.1039/D0RA00223B
- K. Vijayaraghavan and F.D. Raja, Clean Soil Air Water, 43, 1174 (2015); https://doi.org/10.1002/clen.201400423
References
D. Bekchanov, H. Kawakita, M. Mukhamediev, S. Khushvaktov and M. Juraev, Polym. Adv. Technol., 32, 2700 (2021); https://doi.org/10.1002/pat.5209
M.G. Mukhamediev and D.Z. Bekchanov, Russ. J. Appl. Chem., 92, 1499 (2019); https://doi.org/10.1134/S1070427219110053
B.O. Otunola and O.O. Ololade, Environ. Technol. Innov., 18, 100692 (2020); https://doi.org/10.1016/j.eti.2020.100692
A.G. Olaremu, Chem. Res. J., 6, 157 (2021).
B. Davron, M. Mukhtar, K. Nurbek, X. Suyun and J. Murod, Int. J. Technol., 11, 794 (2020); https://doi.org/10.14716/ijtech.v11i4.4024
M.G. Mukhamediev, D.Z. Bekchanov, M.M. Juraev, P. Lieberzeit and D.A. Gafurova, Russ. J. Appl. Chem., 94, 1594 (2021); https://doi.org/10.1134/S1070427221120041
M. Debure, C. Tournassat, C. Lerouge, B. Made, J.C. Robinet, A.M. Fernandez and S. Grangeon, Sci. Total Environ., 642, 216 (2018); https://doi.org/10.1016/j.scitotenv.2018.06.037
M. Kotti, A. Papafilippaki, P. Prassa and A. Xirouhaki, Comput. Water, Energy Environ. Eng., 7, 111 2018); https://doi.org/10.4236/cweee.2018.73007
P. Lieberzeit, D. Bekchanov and M. Mukhamediev, Polym. Adv. Technol., 33, 1809 (2022); https://doi.org/10.1002/pat.5656
X.L. Su, L.Y. Ma, J.M. Wei and R.L. Zhu, Appl. Clay Sci., 132-133, 261 (2016); https://doi.org/10.1016/j.clay.2016.06.011
F. Koksal, O. Gencel and M. Kaya, Constr. Build. Mater., 88, 175 (2015); https://doi.org/10.1016/j.conbuildmat.2015.04.021
D.S. Moraes, E.M.S. Rodrigues, C.N. Lamarao, G.T. Marques and A.F.S. Rente, J. Hazard. Mater., 366, 34 (2019); https://doi.org/10.1016/j.jhazmat.2018.11.086
A. Wegrzyn, L. Chmielarz, P. Zjezdzalka, A. Kowalczyk, M. Jablonska, X.B. Tolosa and M. Michalik, Acta Geodyn. Geomater., 10, 353 (2013); https://doi.org/10.13168/AGG.2013.0034
M. Bugarcic, Z. Lopicic, T. Šoštaric, A. Marinkovic, J.D. Rusmirovic, D. Miloševic and M. Milivojevic, J. Environ. Chem. Eng., 9, 106020 (2021); https://doi.org/10.1016/j.jece.2021.106020
N.C. Das and M. Bandyopadhyay, Water Environ. Res., 64, 852 (1992).
J. Feng, M. Liu, L. Fu, K. Zhang, Z. Xie, D. Shi and X. Ma, RSC Adv., 10, 7635 (2020); https://doi.org/10.1039/D0RA00223B
K. Vijayaraghavan and F.D. Raja, Clean Soil Air Water, 43, 1174 (2015); https://doi.org/10.1002/clen.201400423