Copyright (c) 2024 S.W. Ko, H. Chung
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photocatalytic Degradation of Tetracycline Hydrochloride using Hybrid C60 Fullerene Nanowhisker-Zeolitic Imidazolate Framework-8 Composite under Blue Light Emitting Diode Irradiation
Corresponding Author(s) : H. Chung
Asian Journal of Chemistry,
Vol. 36 No. 12 (2024): Vol 36 Issue 12, 2024
Abstract
The C60 fullerene nanowhisker (FNW)-zeolitic imidazolate framework-8 (ZIF-8) composite was synthesized using C60 fullerene nanowhisker, 2-methyl imidazole, zinc nitrate hexahydrate in methanol. The characterization of C60 FNW-ZIF-8 composite was identified using X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The photocatalytic activity for tetracycline hydrochloride degradation was confirmed by UV-visible spectroscopy. A kinetic study indicated that hybrid nanocomposite catalyzed the photodegradation of tetracycline hydrochloride under blue light emitting diode (LED) irradiation following a pseudo-first-order reaction rate law.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.B. Ahmed, J.L. Zhou, N.H. Ngo and W. Guo, Sci. Total Environ., 532, 112 (2015); https://doi.org/10.1016/j.scitotenv.2015.05.130
- S. Wu, H. Hu, Y. Lin, J. Zhang and Y.H. Hu, Chem. Eng. J., 382, 122842 (2020); https://doi.org/10.1016/j.cej.2019.122842
- X.W. Zhang, F. Wang, C.C. Wang, P. Wang, H. Fu and C. Zhao, Chem. Eng. J., 426, 131927 (2021); https://doi.org/10.1016/j.cej.2021.131927
- Y. Zhao, Y. Li, L. Chang, W. He, K. Liu, M. Cui, S. Wang, Y. Zhao and X. Tan, RSC Adv., 14, 4861 (2024); https://doi.org/10.1039/D3RA08225C
- P. Zhang, Y. Li, Y. Cao and L. Han, Bioresour. Technol., 285, 121348 (2019); https://doi.org/10.1016/j.biortech.2019.121348
- I.C. Iakovides, I. Michael-Kordatou, N.F.F. Moreira, A.R. Ribeiro, T. Fernandes, M.F.R. Pereira, O.C. Nunes, C.M. Manaia, A.M.T. Silva and D. Fatta-Kassinos, Water Res., 159, 333 (2019); https://doi.org/10.1016/j.watres.2019.05.025
- A.M. Cahino, M.M.A. de Andrade, E.S. de Araújo, E.L. Silva, C.D.O. Cunha and E.M.R. Rocha, Environ. Qual. Manage., 28, 101 (2018); https://doi.org/10.1002/tqem.21579
- J. Wang, D. Zhi, H. Zhou, X. He and D. Zhang, Water Res., 137, 324 (2018); https://doi.org/10.1016/j.watres.2018.03.030
- X. Wen, Z. Zeng, C. Du, D. Huang, G. Zeng, R. Xiao, C. Lai, P. Xu, C. Zhang, J. Wan, L. Hu, L. Yin, C. Zhou and R. Deng, Chemosphere, 222, 865 (2019); https://doi.org/10.1016/j.chemosphere.2019.02.020
- G.H. Yang, D.D. Bao, D.Q. Zhang, C. Wang, L.L. Qu and H.T. Li, Nanoscale Res. Lett., 13, 146 (2018); https://doi.org/10.1186/s11671-018-2555-9
- J. Hou, Z. Chen, J. Gao, Y. Xie, L. Li, S. Qin, Q. Wang, D. Mao and Y. Luo, Water Res., 159, 511 (2019); https://doi.org/10.1016/j.watres.2019.05.034
- H. Wang, Y. Wu, M. Feng, W. Tu, T. Xiao, T. Xiong, H. Ang, X. Yuan and J.W. Chew, Water Res., 144, 215 (2018); https://doi.org/10.1016/j.watres.2018.07.025
- I.A. Vasiliadou, R. Molina, M.I. Pariente, K.C. Christoforidis, F. Martinez and J.A. Melero, Chem. Eng. J., 359, 1427 (2019); https://doi.org/10.1016/j.cej.2018.11.035
- H. Xiong, S. Dong, J. Zhang, D. Zhou and B.E. Rittmann, Water Res., 136, 75 (2018); https://doi.org/10.1016/j.watres.2018.02.061
- A. Truppi, F. Petronella, T. Placido, V. Margiotta, G. Lasorella, L. Giotta, C. Giannini, T. Sibillano, S. Murgolo, G. Mascolo, A. Agostiano, M.L. Curri and R. Comparelli, Appl. Catal. B, 243, 604 (2019); https://doi.org/10.1016/j.apcatb.2018.11.002
- L. Chen, S. Yang, Y. Huang, B. Zhang, F. Kang, D. Ding and T. Cai, J. Hazard. Mater., 371, 566 (2019); https://doi.org/10.1016/j.jhazmat.2019.03.038
- J. Lyu, J. Shao, Y. Wang, Y. Qiu, J. Li, T. Li, Y. Peng and F. Liu, Chem. Eng. J., 358, 614 (2019); https://doi.org/10.1016/j.cej.2018.10.085
- L. Rimoldi, D. Meroni, G. Cappelletti and S. Ardizzone, Catal. Today, 281, 38 (2017); https://doi.org/10.1016/j.cattod.2016.08.015
- L.K. Shrestha, R.G. Shrestha, J.P. Hill and K. Ariga, J. Oleo Sci., 62, 541 (2013); https://doi.org/10.5650/jos.62.541
- K. Miyazawa, A. Obayashi and M. Kuwabara, J. Am. Ceram. Soc., 84, 3037 (2001); https://doi.org/10.1111/j.1151-2916.2001.tb01133.x
- J.W. Ko, S. Jeon and W.B. Ko, Fuller. Nanotub. Carbon Nanostruct., 28, 642 (2020); https://doi.org/10.1080/1536383X.2020.1733533
- J.W. Ko, S.H. Park, S. Jeon, H. Chung and W.B. Ko, Fuller. Nanotub. Carbon Nanostruct., 30, 584 (2022); https://doi.org/10.1080/1536383X.2021.1978985
- K. Miyazawa, M. Yoshitake and Y. Tanaka, Surf. Eng., 34, 846 (2018); https://doi.org/10.1080/02670844.2017.1396779
- B.H. Cho, K.B. Lee, K. Miyazawa and W.B. Ko, Asian J. Chem., 25, 8027 (2013); https://doi.org/10.14233/ajchem.2013.14974
- K. Miyazawa, Sci. Technol. Adv. Mater., 16, 013502 (2015); https://doi.org/10.1088/1468-6996/16/1/013502
- R. Kato and K. Miyazawa, J. Nanotechnol., 2012, 101243 (2012); https://doi.org/10.1155/2012/101243
- J.W. Ko, Y.A. Son and W.B. Ko, Elastom. Compos., 55, 321 (2020); https://doi.org/10.7473/EC.2020.55.4.321
- R. Ameloot, E. Gobechiya, H. Uji-i, J.A. Martens, J. Hofkens, L. Alaerts, B.F. Sels and D.E. De Vos, Adv. Mater., 22, 2685 (2010); https://doi.org/10.1002/adma.200903867
- Y. Pan, Y. Liu, G. Zeng, L. Zhao and Z. Lai, Chem. Commun., 47, 2071 (2011); https://doi.org/10.1039/c0cc05002d
- M. Zhu, S.R. Venna, J.B. Jasinski and M.A. Carreon, Chem. Mater., 23, 3590 (2011); https://doi.org/10.1021/cm201701f
- S. Tanaka, K. Kida, M. Okita, Y. Ito and Y. Miyake, Chem. Lett., 41, 1337 (2012); https://doi.org/10.1246/cl.2012.1337
- A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’keeffe and O.M. Yaghi, Acc. Chem. Res., 43, 58 (2010); https://doi.org/10.1021/ar900116g
- J. Duan, Y. Pan, F. Pacheco, E. Litwiller, Z. Lai and I. Pinnau, J. Membr. Sci., 476, 303 (2015); https://doi.org/10.1016/j.memsci.2014.11.038
- L. Wang, M. Fang, J. Liu, J. He, L. Deng, J. Li and J. Lei, RSC Adv., 5, 50942 (2015); https://doi.org/10.1039/C5RA06185G
- J.J. Beh, J.K. Lim, E.P. Ng and B.S. Ooi, Mater. Chem. Phys., 216, 393 (2018); https://doi.org/10.1016/j.matchemphys.2018.06.022
- J. Cravillon, S. Münzer, S.J. Lohmeier, A. Feldhoff, K. Huber and M. Wiebcke, Chem. Mater., 21, 1410 (2009); https://doi.org/10.1021/cm900166h
- K. Kida, M. Okita, K. Fujita, S. Tanaka and Y. Miyake, CrystEngComm, 15, 1794 (2013); https://doi.org/10.1039/c2ce26847g
- A. Schejn, L. Balan, V. Falk, L. Aranda, G. Medjahdi and R. Schneider, CrystEngComm, 16, 4493 (2014); https://doi.org/10.1039/C3CE42485E
- L.T.L. Nguyen, K.K.A. Le and N.T.S. Phan, Chin. J. Catal., 33, 688 (2012); https://doi.org/10.1016/S1872-2067(11)60368-9
- J.W. Ko and W.B. Ko, Mater. Trans., 57, 2122 (2016); https://doi.org/10.2320/matertrans.M2016214
- D. Radhakrishnan and C. Narayana, J. Chem. Phys., 144, 134704 (2016); https://doi.org/10.1063/1.4945013
- G. Kumari, K. Jayaramulu, T.K. Maji and C. Narayana, J. Phys. Chem. A, 117, 11006 (2013); https://doi.org/10.1021/jp407792a
- T.A. Saleh and V.K. Gupta, J. Colloid Interface Sci., 371, 101 (2012); https://doi.org/10.1016/j.jcis.2011.12.038
References
M.B. Ahmed, J.L. Zhou, N.H. Ngo and W. Guo, Sci. Total Environ., 532, 112 (2015); https://doi.org/10.1016/j.scitotenv.2015.05.130
S. Wu, H. Hu, Y. Lin, J. Zhang and Y.H. Hu, Chem. Eng. J., 382, 122842 (2020); https://doi.org/10.1016/j.cej.2019.122842
X.W. Zhang, F. Wang, C.C. Wang, P. Wang, H. Fu and C. Zhao, Chem. Eng. J., 426, 131927 (2021); https://doi.org/10.1016/j.cej.2021.131927
Y. Zhao, Y. Li, L. Chang, W. He, K. Liu, M. Cui, S. Wang, Y. Zhao and X. Tan, RSC Adv., 14, 4861 (2024); https://doi.org/10.1039/D3RA08225C
P. Zhang, Y. Li, Y. Cao and L. Han, Bioresour. Technol., 285, 121348 (2019); https://doi.org/10.1016/j.biortech.2019.121348
I.C. Iakovides, I. Michael-Kordatou, N.F.F. Moreira, A.R. Ribeiro, T. Fernandes, M.F.R. Pereira, O.C. Nunes, C.M. Manaia, A.M.T. Silva and D. Fatta-Kassinos, Water Res., 159, 333 (2019); https://doi.org/10.1016/j.watres.2019.05.025
A.M. Cahino, M.M.A. de Andrade, E.S. de Araújo, E.L. Silva, C.D.O. Cunha and E.M.R. Rocha, Environ. Qual. Manage., 28, 101 (2018); https://doi.org/10.1002/tqem.21579
J. Wang, D. Zhi, H. Zhou, X. He and D. Zhang, Water Res., 137, 324 (2018); https://doi.org/10.1016/j.watres.2018.03.030
X. Wen, Z. Zeng, C. Du, D. Huang, G. Zeng, R. Xiao, C. Lai, P. Xu, C. Zhang, J. Wan, L. Hu, L. Yin, C. Zhou and R. Deng, Chemosphere, 222, 865 (2019); https://doi.org/10.1016/j.chemosphere.2019.02.020
G.H. Yang, D.D. Bao, D.Q. Zhang, C. Wang, L.L. Qu and H.T. Li, Nanoscale Res. Lett., 13, 146 (2018); https://doi.org/10.1186/s11671-018-2555-9
J. Hou, Z. Chen, J. Gao, Y. Xie, L. Li, S. Qin, Q. Wang, D. Mao and Y. Luo, Water Res., 159, 511 (2019); https://doi.org/10.1016/j.watres.2019.05.034
H. Wang, Y. Wu, M. Feng, W. Tu, T. Xiao, T. Xiong, H. Ang, X. Yuan and J.W. Chew, Water Res., 144, 215 (2018); https://doi.org/10.1016/j.watres.2018.07.025
I.A. Vasiliadou, R. Molina, M.I. Pariente, K.C. Christoforidis, F. Martinez and J.A. Melero, Chem. Eng. J., 359, 1427 (2019); https://doi.org/10.1016/j.cej.2018.11.035
H. Xiong, S. Dong, J. Zhang, D. Zhou and B.E. Rittmann, Water Res., 136, 75 (2018); https://doi.org/10.1016/j.watres.2018.02.061
A. Truppi, F. Petronella, T. Placido, V. Margiotta, G. Lasorella, L. Giotta, C. Giannini, T. Sibillano, S. Murgolo, G. Mascolo, A. Agostiano, M.L. Curri and R. Comparelli, Appl. Catal. B, 243, 604 (2019); https://doi.org/10.1016/j.apcatb.2018.11.002
L. Chen, S. Yang, Y. Huang, B. Zhang, F. Kang, D. Ding and T. Cai, J. Hazard. Mater., 371, 566 (2019); https://doi.org/10.1016/j.jhazmat.2019.03.038
J. Lyu, J. Shao, Y. Wang, Y. Qiu, J. Li, T. Li, Y. Peng and F. Liu, Chem. Eng. J., 358, 614 (2019); https://doi.org/10.1016/j.cej.2018.10.085
L. Rimoldi, D. Meroni, G. Cappelletti and S. Ardizzone, Catal. Today, 281, 38 (2017); https://doi.org/10.1016/j.cattod.2016.08.015
L.K. Shrestha, R.G. Shrestha, J.P. Hill and K. Ariga, J. Oleo Sci., 62, 541 (2013); https://doi.org/10.5650/jos.62.541
K. Miyazawa, A. Obayashi and M. Kuwabara, J. Am. Ceram. Soc., 84, 3037 (2001); https://doi.org/10.1111/j.1151-2916.2001.tb01133.x
J.W. Ko, S. Jeon and W.B. Ko, Fuller. Nanotub. Carbon Nanostruct., 28, 642 (2020); https://doi.org/10.1080/1536383X.2020.1733533
J.W. Ko, S.H. Park, S. Jeon, H. Chung and W.B. Ko, Fuller. Nanotub. Carbon Nanostruct., 30, 584 (2022); https://doi.org/10.1080/1536383X.2021.1978985
K. Miyazawa, M. Yoshitake and Y. Tanaka, Surf. Eng., 34, 846 (2018); https://doi.org/10.1080/02670844.2017.1396779
B.H. Cho, K.B. Lee, K. Miyazawa and W.B. Ko, Asian J. Chem., 25, 8027 (2013); https://doi.org/10.14233/ajchem.2013.14974
K. Miyazawa, Sci. Technol. Adv. Mater., 16, 013502 (2015); https://doi.org/10.1088/1468-6996/16/1/013502
R. Kato and K. Miyazawa, J. Nanotechnol., 2012, 101243 (2012); https://doi.org/10.1155/2012/101243
J.W. Ko, Y.A. Son and W.B. Ko, Elastom. Compos., 55, 321 (2020); https://doi.org/10.7473/EC.2020.55.4.321
R. Ameloot, E. Gobechiya, H. Uji-i, J.A. Martens, J. Hofkens, L. Alaerts, B.F. Sels and D.E. De Vos, Adv. Mater., 22, 2685 (2010); https://doi.org/10.1002/adma.200903867
Y. Pan, Y. Liu, G. Zeng, L. Zhao and Z. Lai, Chem. Commun., 47, 2071 (2011); https://doi.org/10.1039/c0cc05002d
M. Zhu, S.R. Venna, J.B. Jasinski and M.A. Carreon, Chem. Mater., 23, 3590 (2011); https://doi.org/10.1021/cm201701f
S. Tanaka, K. Kida, M. Okita, Y. Ito and Y. Miyake, Chem. Lett., 41, 1337 (2012); https://doi.org/10.1246/cl.2012.1337
A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’keeffe and O.M. Yaghi, Acc. Chem. Res., 43, 58 (2010); https://doi.org/10.1021/ar900116g
J. Duan, Y. Pan, F. Pacheco, E. Litwiller, Z. Lai and I. Pinnau, J. Membr. Sci., 476, 303 (2015); https://doi.org/10.1016/j.memsci.2014.11.038
L. Wang, M. Fang, J. Liu, J. He, L. Deng, J. Li and J. Lei, RSC Adv., 5, 50942 (2015); https://doi.org/10.1039/C5RA06185G
J.J. Beh, J.K. Lim, E.P. Ng and B.S. Ooi, Mater. Chem. Phys., 216, 393 (2018); https://doi.org/10.1016/j.matchemphys.2018.06.022
J. Cravillon, S. Münzer, S.J. Lohmeier, A. Feldhoff, K. Huber and M. Wiebcke, Chem. Mater., 21, 1410 (2009); https://doi.org/10.1021/cm900166h
K. Kida, M. Okita, K. Fujita, S. Tanaka and Y. Miyake, CrystEngComm, 15, 1794 (2013); https://doi.org/10.1039/c2ce26847g
A. Schejn, L. Balan, V. Falk, L. Aranda, G. Medjahdi and R. Schneider, CrystEngComm, 16, 4493 (2014); https://doi.org/10.1039/C3CE42485E
L.T.L. Nguyen, K.K.A. Le and N.T.S. Phan, Chin. J. Catal., 33, 688 (2012); https://doi.org/10.1016/S1872-2067(11)60368-9
J.W. Ko and W.B. Ko, Mater. Trans., 57, 2122 (2016); https://doi.org/10.2320/matertrans.M2016214
D. Radhakrishnan and C. Narayana, J. Chem. Phys., 144, 134704 (2016); https://doi.org/10.1063/1.4945013
G. Kumari, K. Jayaramulu, T.K. Maji and C. Narayana, J. Phys. Chem. A, 117, 11006 (2013); https://doi.org/10.1021/jp407792a
T.A. Saleh and V.K. Gupta, J. Colloid Interface Sci., 371, 101 (2012); https://doi.org/10.1016/j.jcis.2011.12.038