Copyright (c) 2024 Eashwar Sai Komarla Rajasekhar, Abdur Rahman Junaid Nayeem, Vishal Satish Patil, Kamati Mounika, Satish Lahu Patil, Shruti Srivastava, Gaurav Tiwari
This work is licensed under a Creative Commons Attribution 4.0 International License.
Unveiling the Molecular World: A Narrative Review on Data Science and Visualization in Chemical Sciences
Corresponding Author(s) : Gaurav Tiwari
Asian Journal of Chemistry,
Vol. 36 No. 12 (2024): Vol 36 Issue 12, 2024
Abstract
This narrative review explores the transformative role of data science and visualization in modern chemistry. It begins by contextualizing the importance of chemistry across various domains, highlighting the emergence of data-driven approaches as catalysts for innovation and discovery. Harnessing big data in chemistry is discussed, emphasizing the diverse sources of chemical data and the need for robust analysis strategies. The review then delves into the power of machine learning (ML) algorithms in chemical discovery, highlighting their ability to accurately forecast molecular characteristics and significantly expedite pharmaceutical development. Visualizing chemical structures and dynamics is explored, with an emphasis on the role of visualization techniques in elucidating complex molecular phenomena. Integrative approaches in cheminformatics are examined, illustrating how interdisciplinary collaboration enables comprehensive analysis of chemical data. Challenges and opportunities in data-driven chemistry are addressed, alongside future perspectives on intelligent chemical systems. The review concludes by underscoring the transformative impact of data science and visualization on chemistry, advocating for continued investment and interdisciplinary collaboration to drive scientific innovation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Yadav, R. Srivastava, F. Naaz, R. Verma and R.K. Singh, Curr. Pharm. Des., 28, 232 (2022); https://doi.org/10.2174/1381612827666211102101617
- W.L. Williams, L. Zeng, T. Gensch, M.S. Sigman, A.G. Doyle and E.V. Anslyn, ACS Cent. Sci., 7, 1622 (2021); https://doi.org/10.1021/acscentsci.1c00535
- H. Hwang and L. Ryan, Biom. J., 62, 270 (2020); https://doi.org/10.1002/bimj.201900034
- I.H. Sarker, SN Comput. Sci., 2, 160 (2021); https://doi.org/10.1007/s42979-021-00592-x
- C. Wang, M.H. Chen, E. Schifano, J. Wu and J. Yan, Stat. Interface, 9, 399 (2016); https://doi.org/10.4310/SII.2016.v9.n4.a1
- M. Breinig, F.A. Klein, W. Huber and M. Boutros, Mol. Syst. Biol., 11, 846 (2015); https://doi.org/10.15252/msb.20156400
- J. Bajorath, Nat. Rev. Drug Discov., 1, 882 (2002); https://doi.org/10.1038/nrd941
- A. Glielmo, B.E. Husic, A. Rodriguez, C. Clementi, F. Noé and A. Laio, Chem. Rev., 121, 9722 (2021); https://doi.org/10.1021/acs.chemrev.0c01195
- D. Kuták, P. Vázquez, T. Isenberg, M. Krone, M. Baaden, J. Byška, B. Kozlíková and H. Miao, Comput. Graph. Forum, 42, e14738 (2023); https://doi.org/10.1111/cgf.14738
- J. Crossley-Lewis, J. Dunn, C. Buda, G.J. Sunley, A.M. Elena, I.T. Todorov, C.W. Yong, D.R. Glowacki, A.J. Mulholland and N.L. Allan, J. Mol. Graph Model., 125, 108606 (2023); https://doi.org/10.1016/j.jmgm.2023.108606
- E.M. Williamson and R.L. Brutchey, Inorg. Chem., 62, 16251 (2023); https://doi.org/10.1021/acs.inorgchem.3c02697
- S.K. Niazi and Z. Mariam, Pharmaceuticals, 17, 22 (2023); https://doi.org/10.3390/ph17010022
- X. Dai and L. Shen, Front. Med., 9, 911861 (2022); https://doi.org/10.3389/fmed.2022.911861
- X. Liu, L. Abad, L. Chatterjee, I.M. Cristea and M. Varjosalo, Mass Spectrom. Rev., (2024); https://doi.org/10.1002/mas.21887
- L. Böselt, M. Thürlemann and S. Riniker, J. Chem. Theory Comput., 17, 2641 (2021); https://doi.org/10.1021/acs.jctc.0c01112
- R. Cárdenas, J. Martínez-Seoane and C. Amero, Molecules, 25, 4783 (2020); https://doi.org/10.3390/molecules25204783
- S. Kim, P.A. Thiessen, E.E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B.A. Shoemaker, J. Wang, B. Yu, J. Zhang and S.H. Bryant, Nucleic Acids Res., 44(D1), D1202 (2016); https://doi.org/10.1093/nar/gkv951
- H.E. Pence and A. Williams, J. Chem. Educ., 87, 1123 (2010); https://doi.org/10.1021/ed100697w
- C.R. Groom, I.J. Bruno, M.P. Lightfoot and S.C. Ward, Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 72, 171 (2016); https://doi.org/10.1107/S2052520616003954
- P.O. Williamson and C.I.J. Minter, J. Med. Libr. Assoc., 107, 16 (2019); https://doi.org/10.5195/jmla.2019.433
- American Chemical Society National Historic Chemical Landmarks, Chemical Abstracts Service (CAS); http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/cas.html (accessed on August 2, 2024).
- G. Asche, World Pat. Inf., 48, 16 (2017); https://doi.org/10.1016/j.wpi.2016.11.004
- R. Guha, D.T. Nguyen, N. Southall and A. Jadhav, Curr. Protoc. Chem. Biol., 4, 193 (2012); https://doi.org/10.1002/9780470559277.ch110262
- L. Liu, B.F. Jones, B. Uzzi and D. Wang, Nat. Hum. Behav., 7, 1046 (2023); https://doi.org/10.1038/s41562-023-01562-4
- A.T. Rosário and J.C. Dias, Int. J. Inform. Manage. Data Insights, 3, 100203 (2023); https://doi.org/10.1016/j.jjimei.2023.100203
- M.L. Heacock, A.R. Lopez, S.M. Amolegbe, D.J. Carlin, H.F. Henry, B.A. Trottier, M.L. Velasco and W.A. Suk, Environ. Sci. Technol., 56, 7544 (2022); https://doi.org/10.1021/acs.est.1c08383
- A.H. Cheng, C.T. Ser, M. Skreta, A. Guzmán-Cordero, L. Thiede, A. Burger, A. Aldossary, S.X. Leong, S. Pablo-García, F. Strieth-Kalthoff and A. Aspuru-Guzik, Faraday Discuss., (2024); https://doi.org/10.1039/D4FD00153B
- E. Ferrero, S. Brachat, J.L. Jenkins, P. Marc, P. Skewes-Cox, R.C. Altshuler, C. Gubser-Keller, A. Kauffmann, E.K. Sassaman, J.M. Laramie, B. Schoeberl, M.L. Borowsky and N. Stiefl, PLOS Comput. Biol., 16, e1008126 (2020); https://doi.org/10.1371/journal.pcbi.1008126
- J.A. Keith, V. Vassilev-Galindo, B. Cheng, S. Chmiela, M. Gastegger, K.-R. Müller and A. Tkatchenko, Chem. Rev., 121, 9816 (2021); https://doi.org/10.1021/acs.chemrev.1c00107
- R.T. Thibault, O.B. Amaral, F. Argolo, A.E. Bandrowski, A.R. Davidson and N.I. Drude, PLoS Biol., 21, e3002362 (2023); https://doi.org/10.1371/journal.pbio.3002362
- National Academies of Sciences, Engineering, and Medicine; Policy and Global Affairs; Board on Research Data and Information; Committee on Toward an Open Science Enterprise; Open Science by Design: Realizing a Vision for 21st Century Research. Washington (DC): National Academies Press (USA) (2018).
- A. Salazar, B. Wentzel, S. Schimmler, R. Gläser, S. Hanf and S.A. Schunk, Chem. Eur. J., 29, e202202720 (2023); https://doi.org/10.1002/chem.202202720
- R.P. França, A.C.B. Monteiro, R. Arthur and Y. Iano, eds.: V. Piuri, S. Raj, A. Genovese and R. Srivastava, Hybrid Computational Intelligence for Pattern Analysis, In: Trends in Deep Learning Methodologies, Academic Press, pp. 63-87 (2021); https://doi.org/10.1016/B978-0-12-822226-3.00003-9
- K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. von Lilienfeld, K.-R. Müller and A. Tkatchenko, J. Phys. Chem. Lett., 6, 2326 (2015); https://doi.org/10.1021/acs.jpclett.5b00831
- D. Paul, G. Sanap, S. Shenoy, D. Kalyane, K. Kalia and R.K. Tekade, Drug Discov. Today, 26, 80 (2021); https://doi.org/10.1016/j.drudis.2020.10.010
- C. Selvaraj, I. Chandra and S.K. Singh, Mol. Divers., 26, 1893 (2022); https://doi.org/10.1007/s11030-021-10326-z
- B.J. Neves, R.C. Braga, C.C. Melo-Filho, J.T. Moreira-Filho, E.N. Muratov and C.H. Andrade, Front. Pharmacol., 9, 1275 (2018); https://doi.org/10.3389/fphar.2018.01275
- V. Svetnik, A. Liaw, C. Tong, J.C. Culberson, R.P. Sheridan and B.P. Feuston, J. Chem. Inf. Comput. Sci., 43, 1947 (2003); https://doi.org/10.1021/ci034160g
- A. Tropsha, O. Isayev, A. Varnek, G. Schneider and A. Cherkasov, Nat. Rev. Drug Discov., 23, 141 (2023); https://doi.org/10.1038/s41573-023-00832-0
- A. Button, D. Merk, J.A. Hiss and G. Schneider, Nat. Mach. Intell., 1, 307 (2019); https://doi.org/10.1038/s42256-019-0067-7
- A.P. Lind and P.C. Anderson, PLoS One, 14, e0219774 (2019); https://doi.org/10.1371/journal.pone.0219774
- K.A. Carpenter and X. Huang, Curr. Pharm. Des., 24, 3347 (2018); https://doi.org/10.2174/1381612824666180607124038
- N. Schapin, M. Majewski, A. Varela-Rial, C. Arroniz and G.D. Fabritiis, Artif. Intellig. Chem., 1, 100020 (2023); https://doi.org/10.1016/j.aichem.2023.100020
- R. Han, H. Yoon, G. Kim, H. Lee and Y. Lee, Pharmaceuticals, 16, 1259 (2023); https://doi.org/10.3390/ph16091259
- O.M.H. Salo-Ahen, I. Alanko, R. Bhadane, A.M.J.J. Bonvin, R.V. Honorato, S. Hossain, A.H. Juffer, A. Kabedev, M. Lahtela-Kakkonen, A.S. Larsen, E. Lescrinier, P. Marimuthu, M.U. Mirza, G. Mustafa, A. Nunes-Alves, T. Pantsar, A. Saadabadi, K. Singaravelu and M. Vanmeert, Processes, 9, 71 (2020); https://doi.org/10.3390/pr9010071
- H. Belghit, M. Spivak, M. Dauchez, M. Baaden and J. Jonquet-Prevoteau, Front. Bioinform., 4, 1356659 (2024); https://doi.org/10.3389/fbinf.2024.1356659
- B. Kozlíková, M. Krone, M. Falk, N. Lindow, M. Baaden, D. Baum, I. Viola, J. Parulek and H.C. Hege, Comput. Graph. Forum, 36, 178 (2017); https://doi.org/10.1111/cgf.13072
- Z. Liu, B. Kerr, M. Dontcheva, J. Grover, M. Hoffman and A. Wilson, Comput. Graph. Forum, 36, 527 (2017); https://doi.org/10.1111/cgf.13208
- H.M. Deeks, R.K. Walters, S.R. Hare, M.B. O’Connor, A.J. Mulholland and D.R. Glowacki, PLoS One, 15, e0228461 (2020); https://doi.org/10.1371/journal.pone.0228461
- H.S. Fernandes, N.M.F.S.A. Cerqueira and S.F. Sousa, J. Chem. Educ., 98, 1789 (2021); https://doi.org/10.1021/acs.jchemed.0c01317
- S. Rosignoli and A. Paiardini, Biomolecules, 12, 1764 (2022); https://doi.org/10.3390/biom12121764
- J. Hsin, A. Arkhipov, Y. Yin, J.E. Stone and K. Schulten, Curr Protoc Bioinformatics. Chapter 5: Unit 5.7(2008); https://doi.org/10.1002/0471250953
- E.C. Meng, T.D. Goddard, E.F. Pettersen, G.S. Couch, Z.J. Pearson, J.H. Morris and T.E. Ferrin, Protein Sci., 32, e4792 (2023); https://doi.org/10.1002/pro.4792
- M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess and E. Lindahl, SoftwareX, 1–2, 19 (2015); https://doi.org/10.1016/j.softx.2015.06.001
- D.A. Case, T.E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K.M. Merz Jr., A. Onufriev, C. Simmerling, B. Wang and R.J. Woods, J. Comput. Chem., 26, 1668 (2005); https://doi.org/10.1002/jcc.20290
- J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kalé and K. Schulten, J. Comput. Chem., 26, 1781 (2005); https://doi.org/10.1002/jcc.20289
- J.E. Stone, W.R. Sherman and K. Schulten, IEEE Int. Symp. Parallel Distrib. Process. Workshops PhD Forum, 2016, 1048 (2016); https://doi.org/10.1109/IPDPSW.2016.121
- L.L. Jones, J. Chem. Educ., 90, 1571 (2013); https://doi.org/10.1021/ed4001206
- R.J. Petillion and W.S. McNeil, J. Chem. Educ., 97, 1536 (2020); https://doi.org/10.1021/acs.jchemed.9b01105
- D.S. Wishart, Curr Protoc Bioinformatics. Chapter 14: Unit 14.1(2007); https://doi.org/10.1002/0471250953.bi1401s18
- C. Humer, H. Heberle, F. Montanari, T. Wolf, F. Huber, R. Henderson, J. Heinrich and M. Streit, J. Cheminform., 14, 21 (2022); https://doi.org/10.1186/s13321-022-00600-z
- F.I. Saldivar-González, D.L. Prado-Romero, R. Cedillo-González, A.L. Chávez-Hernández, J.F. Avellaneda-Tamayo, A. Gómez-García, L. Juárez-Rivera and J.L. Medina-Franco, J. Chem. Educ., 101, 2549 (2024); https://doi.org/10.1021/acs.jchemed.4c00041
- W. Li, J. Chem. Inf. Model., 46, 1919 (2006); https://doi.org/10.1021/ci0600859
- R. Sharma, Inform. Med. Unlocked, 19, 100303 (2020); https://doi.org/10.1016/j.imu.2020.100303
- A. Voicu, N. Duteanu, M. Voicu, D. Vlad and V. Dumitrascu, J. Cheminform., 12, 3 (2020); https://doi.org/10.1186/s13321-019-0405-0
- M. Mathea, W. Klingspohn and K. Baumann, Mol. Inform., 35, 160 (2016); https://doi.org/10.1002/minf.201501019
- Y. Djoumbou Feunang, R. Eisner, C. Knox, L. Chepelev, J. Hastings, G. Owen, E. Fahy, C. Steinbeck, S. Subramanian, E. Bolton, R. Greiner and D.S. Wishart, J. Cheminform., 8, 61 (2016); https://doi.org/10.1186/s13321-016-0174-y
- J. Dong, Z.J. Yao, M.F. Zhu, N.N. Wang, B. Lu, A.F. Chen, A.P. Lu, H. Miao, W.B. Zeng and D.S. Cao, J. Cheminform., 9, 27 (2017); https://doi.org/10.1186/s13321-017-0215-1
- D. Hevey, Health Psychol. Behav. Med., 6, 301 (2018); https://doi.org/10.1080/21642850.2018.1521283
- A. Ruf and G. Danger, Anal. Chem., 94, 14135 (2022); https://doi.org/10.1021/acs.analchem.2c01271
- A. Amara, C. Frainay, F. Jourdan, T. Naake, S. Neumann, E.M. Novoa-del-Toro, R.M. Salek, L. Salzer, S. Scharfenberg and M. Witting, Front. Mol. Biosci., 9, 841373 (2022); https://doi.org/10.3389/fmolb.2022.841373
- J. Bajorath, A.L. Chávez-Hernández, M. Duran-Frigola, E. Fernández-de Gortari, J. Gasteiger, E. López-López, G.M. Maggiora, J.L. Medina-Franco, O. Méndez-Lucio, J. Mestres, R.A. Miranda-Quintana, T.I. Oprea, F. Plisson, F.D. Prieto-Martínez, R. Rodríguez-Pérez, P. Rondón-Villarreal, F.I. Saldívar-Gonzalez, N. Sánchez-Cruz and M. Valli, J. Cheminform., 14, 82 (2022); https://doi.org/10.1186/s13321-022-00661-0
- J.I. Martinez Alvarado, J.M. Meinhardt and S. Lin, Tetrahedron Chem, 1, 100012 (2022); https://doi.org/10.1016/j.tchem.2022.100012
- National Academies of Sciences, Engineering and Medicine. Data Matters: Ethics, Data, and International Research Collaboration in a Changing World: Proceedings of a Workshop. Washington, DC: The National Academies Press (2018); https://doi.org/10.17226/25214
- I.V. Tetko, O. Engkvist, U. Koch, J.L. Reymond and H. Chen, Mol. Inform., 35, 615 (2016); https://doi.org/10.1002/minf.201600073
- L. Himanen, A. Geurts, A.S. Foster and P. Rinke, Adv. Sci. (Weinh.), 6, 1900808 (2019); https://doi.org/10.1002/advs.201900808
- D. Mittal, R. Mease, T. Kuner, H. Flor, R. Kuner and J. Andoh, Gigascience, 12, giad049 (2022); https://doi.org/10.1093/gigascience/giad049
- E. Lopez, J. Etxebarria-Elezgarai, J.M. Amigo and A. Seifert, Anal. Chim. Acta, 1275, 341532 (2023); https://doi.org/10.1016/j.aca.2023.341532
- H.H.H. Aldboush and M. Ferdous, Int. J. Financial Studies, 11, 90 (2023); https://doi.org/10.3390/ijfs11030090
- J. Medina, A.W. Ziaullah, H. Park, I.E. Castelli, A. Shaon, H. Bensmail and F. El-Mellouhi, Matter, 5, 3614 (2022); https://doi.org/10.1016/j.matt.2022.10.007
- K. Gao, D.D. Nguyen, M. Tu and G.W. Wei, J. Chem. Inf. Model., 60, 5682 (2020); https://doi.org/10.1021/acs.jcim.0c00599
- T.K. Patra, ACS Polym. Au, 2, 8 (2022); https://doi.org/10.1021/acspolymersau.1c00035
- A. Blanco-González, A. Cabezón, A. Seco-González, D. Conde-Torres, P. Antelo-Riveiro, Á. Piñeiro and R. Garcia-Fandino, Pharmaceuticals, 16, 891 (2023); https://doi.org/10.3390/ph16060891
- R. Mercado, S.M. Kearnes and C.W. Coley, J. Chem. Inf. Model., 63, 4253 (2023); https://doi.org/10.1021/acs.jcim.3c00607
- J. Bajorath, Future Sci. OA, 4, FSO320 (2018); https://doi.org/10.4155/fsoa-2018-0057
- A.J.S. Hammer, A.I. Leonov, N.L. Bell and L. Cronin, JACS Au, 1, 1572 (2021); https://doi.org/10.1021/jacsau.1c00303
- C. Liu, Y. Chen and F. Mo, Natl. Sci. Open, 3, 20230037 (2023); https://doi.org/10.1360/nso/20230037
- V.P. Ananikov, Artif. Intellig. Chem., 2, 100075 (2024); https://doi.org/10.1016/j.aichem.2024.100075
- X.Y. Tai, H. Zhang, Z. Niu, S.D.R. Christie and J. Xuan, Energy and AI, 2, 100036 (2020); https://doi.org/10.1016/j.egyai.2020.100036
- K.S. Vidhya, A. Sultana, M. Naveen Kumar and H. Rangareddy, Cureus, 15, e47486 (2023); https://doi.org/10.7759/cureus.47486
- Y. Xu, X. Liu, X. Cao, C. Huang, E. Liu, S. Qian, X. Liu, Y. Wu, F. Dong, C.-W. Qiu, J. Qiu, K. Hua, W. Su, J. Wu, H. Xu, Y. Han, C. Fu, Z. Yin, M. Liu, R. Roepman, S. Dietmann, M. Virta, F. Kengara, Z. Zhang, L. Zhang, T. Zhao, J. Dai, J. Yang, L. Lan, M. Luo, Z. Liu, T. An, B. Zhang, X. He, S. Cong, X. Liu, W. Zhang, J.P. Lewis, J.M. Tiedje, Q. Wang, Z. An, F. Wang, L. Zhang, T. Huang, C. Lu, Z. Cai, F. Wang and J. Zhang, Innovation, 2, 100179 (2021); https://doi.org/10.1016/j.xinn.2021.100179
- A. Pyrkov, A. Aliper, D. Bezrukov, Y.C. Lin, D. Polykovskiy, P. Kamya, F. Ren and A. Zhavoronkov, Drug Discov. Today, 28, 103675 (2023); https://doi.org/10.1016/j.drudis.2023.103675
- P.K. Barkoutsos, F. Gkritsis, P.J. Ollitrault, I.O. Sokolov, S. Woerner and I. Tavernelli, Chem. Sci., 12, 4345 (2021); https://doi.org/10.1039/D0SC05718E
- B. Huang, N.O. Symonds and O.A. von Lilienfeld, eds.: W. Andreoni and S. Yip, Quantum Machine Learning in Chemistry and Materials, In: Handbook of Materials Modeling, Springer, Cham, pp 1883–1909 (2020); https://doi.org/10.1007/978-3-319-44677-6_67
- M. Sajjan, J. Li, R. Selvarajan, S.H. Sureshbabu, S.S. Kale, R. Gupta, V. Singh and S. Kais, Chem. Soc. Rev., 51, 6475 (2022); https://doi.org/10.1039/D2CS00203E
- A. Ajagekar and F. You, Korean J. Chem. Eng., 39, 811 (2022); https://doi.org/10.1007/s11814-021-1027-6
- G. Huang, Y. Guo, Y. Chen and Z. Nie, Materials, 16, 5977 (2023); https://doi.org/10.3390/ma16175977
- A. Akinpelu, M. Bhullar and Y. Yao, J. Phys. Condens. Matter, 36, 453001 (2024); https://doi.org/10.1088/1361-648X/ad6bdb
- X. Jiang, S. Luo, K. Liao, S. Jiang, J. Ma, J. Jiang and Z. Shuai, Cell Rep. Phys. Sci., 5, 102049 (2024); https://doi.org/10.1016/j.xcrp.2024.102049
References
M. Yadav, R. Srivastava, F. Naaz, R. Verma and R.K. Singh, Curr. Pharm. Des., 28, 232 (2022); https://doi.org/10.2174/1381612827666211102101617
W.L. Williams, L. Zeng, T. Gensch, M.S. Sigman, A.G. Doyle and E.V. Anslyn, ACS Cent. Sci., 7, 1622 (2021); https://doi.org/10.1021/acscentsci.1c00535
H. Hwang and L. Ryan, Biom. J., 62, 270 (2020); https://doi.org/10.1002/bimj.201900034
I.H. Sarker, SN Comput. Sci., 2, 160 (2021); https://doi.org/10.1007/s42979-021-00592-x
C. Wang, M.H. Chen, E. Schifano, J. Wu and J. Yan, Stat. Interface, 9, 399 (2016); https://doi.org/10.4310/SII.2016.v9.n4.a1
M. Breinig, F.A. Klein, W. Huber and M. Boutros, Mol. Syst. Biol., 11, 846 (2015); https://doi.org/10.15252/msb.20156400
J. Bajorath, Nat. Rev. Drug Discov., 1, 882 (2002); https://doi.org/10.1038/nrd941
A. Glielmo, B.E. Husic, A. Rodriguez, C. Clementi, F. Noé and A. Laio, Chem. Rev., 121, 9722 (2021); https://doi.org/10.1021/acs.chemrev.0c01195
D. Kuták, P. Vázquez, T. Isenberg, M. Krone, M. Baaden, J. Byška, B. Kozlíková and H. Miao, Comput. Graph. Forum, 42, e14738 (2023); https://doi.org/10.1111/cgf.14738
J. Crossley-Lewis, J. Dunn, C. Buda, G.J. Sunley, A.M. Elena, I.T. Todorov, C.W. Yong, D.R. Glowacki, A.J. Mulholland and N.L. Allan, J. Mol. Graph Model., 125, 108606 (2023); https://doi.org/10.1016/j.jmgm.2023.108606
E.M. Williamson and R.L. Brutchey, Inorg. Chem., 62, 16251 (2023); https://doi.org/10.1021/acs.inorgchem.3c02697
S.K. Niazi and Z. Mariam, Pharmaceuticals, 17, 22 (2023); https://doi.org/10.3390/ph17010022
X. Dai and L. Shen, Front. Med., 9, 911861 (2022); https://doi.org/10.3389/fmed.2022.911861
X. Liu, L. Abad, L. Chatterjee, I.M. Cristea and M. Varjosalo, Mass Spectrom. Rev., (2024); https://doi.org/10.1002/mas.21887
L. Böselt, M. Thürlemann and S. Riniker, J. Chem. Theory Comput., 17, 2641 (2021); https://doi.org/10.1021/acs.jctc.0c01112
R. Cárdenas, J. Martínez-Seoane and C. Amero, Molecules, 25, 4783 (2020); https://doi.org/10.3390/molecules25204783
S. Kim, P.A. Thiessen, E.E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B.A. Shoemaker, J. Wang, B. Yu, J. Zhang and S.H. Bryant, Nucleic Acids Res., 44(D1), D1202 (2016); https://doi.org/10.1093/nar/gkv951
H.E. Pence and A. Williams, J. Chem. Educ., 87, 1123 (2010); https://doi.org/10.1021/ed100697w
C.R. Groom, I.J. Bruno, M.P. Lightfoot and S.C. Ward, Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 72, 171 (2016); https://doi.org/10.1107/S2052520616003954
P.O. Williamson and C.I.J. Minter, J. Med. Libr. Assoc., 107, 16 (2019); https://doi.org/10.5195/jmla.2019.433
American Chemical Society National Historic Chemical Landmarks, Chemical Abstracts Service (CAS); http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/cas.html (accessed on August 2, 2024).
G. Asche, World Pat. Inf., 48, 16 (2017); https://doi.org/10.1016/j.wpi.2016.11.004
R. Guha, D.T. Nguyen, N. Southall and A. Jadhav, Curr. Protoc. Chem. Biol., 4, 193 (2012); https://doi.org/10.1002/9780470559277.ch110262
L. Liu, B.F. Jones, B. Uzzi and D. Wang, Nat. Hum. Behav., 7, 1046 (2023); https://doi.org/10.1038/s41562-023-01562-4
A.T. Rosário and J.C. Dias, Int. J. Inform. Manage. Data Insights, 3, 100203 (2023); https://doi.org/10.1016/j.jjimei.2023.100203
M.L. Heacock, A.R. Lopez, S.M. Amolegbe, D.J. Carlin, H.F. Henry, B.A. Trottier, M.L. Velasco and W.A. Suk, Environ. Sci. Technol., 56, 7544 (2022); https://doi.org/10.1021/acs.est.1c08383
A.H. Cheng, C.T. Ser, M. Skreta, A. Guzmán-Cordero, L. Thiede, A. Burger, A. Aldossary, S.X. Leong, S. Pablo-García, F. Strieth-Kalthoff and A. Aspuru-Guzik, Faraday Discuss., (2024); https://doi.org/10.1039/D4FD00153B
E. Ferrero, S. Brachat, J.L. Jenkins, P. Marc, P. Skewes-Cox, R.C. Altshuler, C. Gubser-Keller, A. Kauffmann, E.K. Sassaman, J.M. Laramie, B. Schoeberl, M.L. Borowsky and N. Stiefl, PLOS Comput. Biol., 16, e1008126 (2020); https://doi.org/10.1371/journal.pcbi.1008126
J.A. Keith, V. Vassilev-Galindo, B. Cheng, S. Chmiela, M. Gastegger, K.-R. Müller and A. Tkatchenko, Chem. Rev., 121, 9816 (2021); https://doi.org/10.1021/acs.chemrev.1c00107
R.T. Thibault, O.B. Amaral, F. Argolo, A.E. Bandrowski, A.R. Davidson and N.I. Drude, PLoS Biol., 21, e3002362 (2023); https://doi.org/10.1371/journal.pbio.3002362
National Academies of Sciences, Engineering, and Medicine; Policy and Global Affairs; Board on Research Data and Information; Committee on Toward an Open Science Enterprise; Open Science by Design: Realizing a Vision for 21st Century Research. Washington (DC): National Academies Press (USA) (2018).
A. Salazar, B. Wentzel, S. Schimmler, R. Gläser, S. Hanf and S.A. Schunk, Chem. Eur. J., 29, e202202720 (2023); https://doi.org/10.1002/chem.202202720
R.P. França, A.C.B. Monteiro, R. Arthur and Y. Iano, eds.: V. Piuri, S. Raj, A. Genovese and R. Srivastava, Hybrid Computational Intelligence for Pattern Analysis, In: Trends in Deep Learning Methodologies, Academic Press, pp. 63-87 (2021); https://doi.org/10.1016/B978-0-12-822226-3.00003-9
K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. von Lilienfeld, K.-R. Müller and A. Tkatchenko, J. Phys. Chem. Lett., 6, 2326 (2015); https://doi.org/10.1021/acs.jpclett.5b00831
D. Paul, G. Sanap, S. Shenoy, D. Kalyane, K. Kalia and R.K. Tekade, Drug Discov. Today, 26, 80 (2021); https://doi.org/10.1016/j.drudis.2020.10.010
C. Selvaraj, I. Chandra and S.K. Singh, Mol. Divers., 26, 1893 (2022); https://doi.org/10.1007/s11030-021-10326-z
B.J. Neves, R.C. Braga, C.C. Melo-Filho, J.T. Moreira-Filho, E.N. Muratov and C.H. Andrade, Front. Pharmacol., 9, 1275 (2018); https://doi.org/10.3389/fphar.2018.01275
V. Svetnik, A. Liaw, C. Tong, J.C. Culberson, R.P. Sheridan and B.P. Feuston, J. Chem. Inf. Comput. Sci., 43, 1947 (2003); https://doi.org/10.1021/ci034160g
A. Tropsha, O. Isayev, A. Varnek, G. Schneider and A. Cherkasov, Nat. Rev. Drug Discov., 23, 141 (2023); https://doi.org/10.1038/s41573-023-00832-0
A. Button, D. Merk, J.A. Hiss and G. Schneider, Nat. Mach. Intell., 1, 307 (2019); https://doi.org/10.1038/s42256-019-0067-7
A.P. Lind and P.C. Anderson, PLoS One, 14, e0219774 (2019); https://doi.org/10.1371/journal.pone.0219774
K.A. Carpenter and X. Huang, Curr. Pharm. Des., 24, 3347 (2018); https://doi.org/10.2174/1381612824666180607124038
N. Schapin, M. Majewski, A. Varela-Rial, C. Arroniz and G.D. Fabritiis, Artif. Intellig. Chem., 1, 100020 (2023); https://doi.org/10.1016/j.aichem.2023.100020
R. Han, H. Yoon, G. Kim, H. Lee and Y. Lee, Pharmaceuticals, 16, 1259 (2023); https://doi.org/10.3390/ph16091259
O.M.H. Salo-Ahen, I. Alanko, R. Bhadane, A.M.J.J. Bonvin, R.V. Honorato, S. Hossain, A.H. Juffer, A. Kabedev, M. Lahtela-Kakkonen, A.S. Larsen, E. Lescrinier, P. Marimuthu, M.U. Mirza, G. Mustafa, A. Nunes-Alves, T. Pantsar, A. Saadabadi, K. Singaravelu and M. Vanmeert, Processes, 9, 71 (2020); https://doi.org/10.3390/pr9010071
H. Belghit, M. Spivak, M. Dauchez, M. Baaden and J. Jonquet-Prevoteau, Front. Bioinform., 4, 1356659 (2024); https://doi.org/10.3389/fbinf.2024.1356659
B. Kozlíková, M. Krone, M. Falk, N. Lindow, M. Baaden, D. Baum, I. Viola, J. Parulek and H.C. Hege, Comput. Graph. Forum, 36, 178 (2017); https://doi.org/10.1111/cgf.13072
Z. Liu, B. Kerr, M. Dontcheva, J. Grover, M. Hoffman and A. Wilson, Comput. Graph. Forum, 36, 527 (2017); https://doi.org/10.1111/cgf.13208
H.M. Deeks, R.K. Walters, S.R. Hare, M.B. O’Connor, A.J. Mulholland and D.R. Glowacki, PLoS One, 15, e0228461 (2020); https://doi.org/10.1371/journal.pone.0228461
H.S. Fernandes, N.M.F.S.A. Cerqueira and S.F. Sousa, J. Chem. Educ., 98, 1789 (2021); https://doi.org/10.1021/acs.jchemed.0c01317
S. Rosignoli and A. Paiardini, Biomolecules, 12, 1764 (2022); https://doi.org/10.3390/biom12121764
J. Hsin, A. Arkhipov, Y. Yin, J.E. Stone and K. Schulten, Curr Protoc Bioinformatics. Chapter 5: Unit 5.7(2008); https://doi.org/10.1002/0471250953
E.C. Meng, T.D. Goddard, E.F. Pettersen, G.S. Couch, Z.J. Pearson, J.H. Morris and T.E. Ferrin, Protein Sci., 32, e4792 (2023); https://doi.org/10.1002/pro.4792
M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess and E. Lindahl, SoftwareX, 1–2, 19 (2015); https://doi.org/10.1016/j.softx.2015.06.001
D.A. Case, T.E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K.M. Merz Jr., A. Onufriev, C. Simmerling, B. Wang and R.J. Woods, J. Comput. Chem., 26, 1668 (2005); https://doi.org/10.1002/jcc.20290
J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kalé and K. Schulten, J. Comput. Chem., 26, 1781 (2005); https://doi.org/10.1002/jcc.20289
J.E. Stone, W.R. Sherman and K. Schulten, IEEE Int. Symp. Parallel Distrib. Process. Workshops PhD Forum, 2016, 1048 (2016); https://doi.org/10.1109/IPDPSW.2016.121
L.L. Jones, J. Chem. Educ., 90, 1571 (2013); https://doi.org/10.1021/ed4001206
R.J. Petillion and W.S. McNeil, J. Chem. Educ., 97, 1536 (2020); https://doi.org/10.1021/acs.jchemed.9b01105
D.S. Wishart, Curr Protoc Bioinformatics. Chapter 14: Unit 14.1(2007); https://doi.org/10.1002/0471250953.bi1401s18
C. Humer, H. Heberle, F. Montanari, T. Wolf, F. Huber, R. Henderson, J. Heinrich and M. Streit, J. Cheminform., 14, 21 (2022); https://doi.org/10.1186/s13321-022-00600-z
F.I. Saldivar-González, D.L. Prado-Romero, R. Cedillo-González, A.L. Chávez-Hernández, J.F. Avellaneda-Tamayo, A. Gómez-García, L. Juárez-Rivera and J.L. Medina-Franco, J. Chem. Educ., 101, 2549 (2024); https://doi.org/10.1021/acs.jchemed.4c00041
W. Li, J. Chem. Inf. Model., 46, 1919 (2006); https://doi.org/10.1021/ci0600859
R. Sharma, Inform. Med. Unlocked, 19, 100303 (2020); https://doi.org/10.1016/j.imu.2020.100303
A. Voicu, N. Duteanu, M. Voicu, D. Vlad and V. Dumitrascu, J. Cheminform., 12, 3 (2020); https://doi.org/10.1186/s13321-019-0405-0
M. Mathea, W. Klingspohn and K. Baumann, Mol. Inform., 35, 160 (2016); https://doi.org/10.1002/minf.201501019
Y. Djoumbou Feunang, R. Eisner, C. Knox, L. Chepelev, J. Hastings, G. Owen, E. Fahy, C. Steinbeck, S. Subramanian, E. Bolton, R. Greiner and D.S. Wishart, J. Cheminform., 8, 61 (2016); https://doi.org/10.1186/s13321-016-0174-y
J. Dong, Z.J. Yao, M.F. Zhu, N.N. Wang, B. Lu, A.F. Chen, A.P. Lu, H. Miao, W.B. Zeng and D.S. Cao, J. Cheminform., 9, 27 (2017); https://doi.org/10.1186/s13321-017-0215-1
D. Hevey, Health Psychol. Behav. Med., 6, 301 (2018); https://doi.org/10.1080/21642850.2018.1521283
A. Ruf and G. Danger, Anal. Chem., 94, 14135 (2022); https://doi.org/10.1021/acs.analchem.2c01271
A. Amara, C. Frainay, F. Jourdan, T. Naake, S. Neumann, E.M. Novoa-del-Toro, R.M. Salek, L. Salzer, S. Scharfenberg and M. Witting, Front. Mol. Biosci., 9, 841373 (2022); https://doi.org/10.3389/fmolb.2022.841373
J. Bajorath, A.L. Chávez-Hernández, M. Duran-Frigola, E. Fernández-de Gortari, J. Gasteiger, E. López-López, G.M. Maggiora, J.L. Medina-Franco, O. Méndez-Lucio, J. Mestres, R.A. Miranda-Quintana, T.I. Oprea, F. Plisson, F.D. Prieto-Martínez, R. Rodríguez-Pérez, P. Rondón-Villarreal, F.I. Saldívar-Gonzalez, N. Sánchez-Cruz and M. Valli, J. Cheminform., 14, 82 (2022); https://doi.org/10.1186/s13321-022-00661-0
J.I. Martinez Alvarado, J.M. Meinhardt and S. Lin, Tetrahedron Chem, 1, 100012 (2022); https://doi.org/10.1016/j.tchem.2022.100012
National Academies of Sciences, Engineering and Medicine. Data Matters: Ethics, Data, and International Research Collaboration in a Changing World: Proceedings of a Workshop. Washington, DC: The National Academies Press (2018); https://doi.org/10.17226/25214
I.V. Tetko, O. Engkvist, U. Koch, J.L. Reymond and H. Chen, Mol. Inform., 35, 615 (2016); https://doi.org/10.1002/minf.201600073
L. Himanen, A. Geurts, A.S. Foster and P. Rinke, Adv. Sci. (Weinh.), 6, 1900808 (2019); https://doi.org/10.1002/advs.201900808
D. Mittal, R. Mease, T. Kuner, H. Flor, R. Kuner and J. Andoh, Gigascience, 12, giad049 (2022); https://doi.org/10.1093/gigascience/giad049
E. Lopez, J. Etxebarria-Elezgarai, J.M. Amigo and A. Seifert, Anal. Chim. Acta, 1275, 341532 (2023); https://doi.org/10.1016/j.aca.2023.341532
H.H.H. Aldboush and M. Ferdous, Int. J. Financial Studies, 11, 90 (2023); https://doi.org/10.3390/ijfs11030090
J. Medina, A.W. Ziaullah, H. Park, I.E. Castelli, A. Shaon, H. Bensmail and F. El-Mellouhi, Matter, 5, 3614 (2022); https://doi.org/10.1016/j.matt.2022.10.007
K. Gao, D.D. Nguyen, M. Tu and G.W. Wei, J. Chem. Inf. Model., 60, 5682 (2020); https://doi.org/10.1021/acs.jcim.0c00599
T.K. Patra, ACS Polym. Au, 2, 8 (2022); https://doi.org/10.1021/acspolymersau.1c00035
A. Blanco-González, A. Cabezón, A. Seco-González, D. Conde-Torres, P. Antelo-Riveiro, Á. Piñeiro and R. Garcia-Fandino, Pharmaceuticals, 16, 891 (2023); https://doi.org/10.3390/ph16060891
R. Mercado, S.M. Kearnes and C.W. Coley, J. Chem. Inf. Model., 63, 4253 (2023); https://doi.org/10.1021/acs.jcim.3c00607
J. Bajorath, Future Sci. OA, 4, FSO320 (2018); https://doi.org/10.4155/fsoa-2018-0057
A.J.S. Hammer, A.I. Leonov, N.L. Bell and L. Cronin, JACS Au, 1, 1572 (2021); https://doi.org/10.1021/jacsau.1c00303
C. Liu, Y. Chen and F. Mo, Natl. Sci. Open, 3, 20230037 (2023); https://doi.org/10.1360/nso/20230037
V.P. Ananikov, Artif. Intellig. Chem., 2, 100075 (2024); https://doi.org/10.1016/j.aichem.2024.100075
X.Y. Tai, H. Zhang, Z. Niu, S.D.R. Christie and J. Xuan, Energy and AI, 2, 100036 (2020); https://doi.org/10.1016/j.egyai.2020.100036
K.S. Vidhya, A. Sultana, M. Naveen Kumar and H. Rangareddy, Cureus, 15, e47486 (2023); https://doi.org/10.7759/cureus.47486
Y. Xu, X. Liu, X. Cao, C. Huang, E. Liu, S. Qian, X. Liu, Y. Wu, F. Dong, C.-W. Qiu, J. Qiu, K. Hua, W. Su, J. Wu, H. Xu, Y. Han, C. Fu, Z. Yin, M. Liu, R. Roepman, S. Dietmann, M. Virta, F. Kengara, Z. Zhang, L. Zhang, T. Zhao, J. Dai, J. Yang, L. Lan, M. Luo, Z. Liu, T. An, B. Zhang, X. He, S. Cong, X. Liu, W. Zhang, J.P. Lewis, J.M. Tiedje, Q. Wang, Z. An, F. Wang, L. Zhang, T. Huang, C. Lu, Z. Cai, F. Wang and J. Zhang, Innovation, 2, 100179 (2021); https://doi.org/10.1016/j.xinn.2021.100179
A. Pyrkov, A. Aliper, D. Bezrukov, Y.C. Lin, D. Polykovskiy, P. Kamya, F. Ren and A. Zhavoronkov, Drug Discov. Today, 28, 103675 (2023); https://doi.org/10.1016/j.drudis.2023.103675
P.K. Barkoutsos, F. Gkritsis, P.J. Ollitrault, I.O. Sokolov, S. Woerner and I. Tavernelli, Chem. Sci., 12, 4345 (2021); https://doi.org/10.1039/D0SC05718E
B. Huang, N.O. Symonds and O.A. von Lilienfeld, eds.: W. Andreoni and S. Yip, Quantum Machine Learning in Chemistry and Materials, In: Handbook of Materials Modeling, Springer, Cham, pp 1883–1909 (2020); https://doi.org/10.1007/978-3-319-44677-6_67
M. Sajjan, J. Li, R. Selvarajan, S.H. Sureshbabu, S.S. Kale, R. Gupta, V. Singh and S. Kais, Chem. Soc. Rev., 51, 6475 (2022); https://doi.org/10.1039/D2CS00203E
A. Ajagekar and F. You, Korean J. Chem. Eng., 39, 811 (2022); https://doi.org/10.1007/s11814-021-1027-6
G. Huang, Y. Guo, Y. Chen and Z. Nie, Materials, 16, 5977 (2023); https://doi.org/10.3390/ma16175977
A. Akinpelu, M. Bhullar and Y. Yao, J. Phys. Condens. Matter, 36, 453001 (2024); https://doi.org/10.1088/1361-648X/ad6bdb
X. Jiang, S. Luo, K. Liao, S. Jiang, J. Ma, J. Jiang and Z. Shuai, Cell Rep. Phys. Sci., 5, 102049 (2024); https://doi.org/10.1016/j.xcrp.2024.102049