Copyright (c) 2024 Sowjanya Pulipati
This work is licensed under a Creative Commons Attribution 4.0 International License.
Artificial Intelligence in Green Organic Chemistry: Pathway to Sustainable and Eco-Friendly Chemistry
Corresponding Author(s) : Sowjanya Pulipati
Asian Journal of Chemistry,
Vol. 36 No. 12 (2024): Vol 36 Issue 12, 2024
Abstract
Artificial intelligence (AI) is playing an increasingly critical role in advancing green organic chemistry by optimizing chemical processes to minimize environmental impact. From predicting reaction outcomes to designing eco-friendly synthetic pathways, AI tools are contributing to sustainable chemical research. This review explores the application of AI in areas such as reaction optimization, solvent selection and waste reduction, all key aspects of green chemistry. Moreover, AI-driven approaches allow for the development of catalysts and reagents that reduce harmful byproducts and energy consumption. Despite these advancements, challenges remain in terms of data availability, integration with experimental workflows and ensuring the interpretability of AI models for chemists. This review also highlights the potential of AI to accelerate green chemistry innovation while maintaining alignment with the 12 principles of green chemistry. By addressing these challenges, AI can further enhance the sustainability of organic synthesis, paving the way for a greener chemical industry.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Mestres, Environ. Sci. Pollut. Res. Int., 12, 128 (2005); https://doi.org/10.1065/espr2005.04.253
- B.A. de Marco, B.S. Rechelo, E.G. Tótoli, A.C. Kogawa and H.R.N. Salgado, Saudi Pharm. J., 27, 1 (2019); https://doi.org/10.1016/j.jsps.2018.07.011
- T.L. Chen, H. Kim, S.Y. Pan, P.-C. Tseng, Y.-P. Lin and P.-C. Chiang, Sci. Total Environ., 716, 136998 (2020); https://doi.org/10.1016/j.scitotenv.2020.136998
- K.E. Jaeger and M.T. Reetz, Curr. Opin. Chem. Biol., 4, 68 (2000); https://doi.org/10.1016/s1367-5931(99)00054-x
- P.A. Uwineza and A. Waskiewicz, Molecules, 25, 3847 (2020); https://doi.org/10.3390/molecules25173847
- F. Mohamadpour and A. M. Amani, RSC Adv., 14, 20609 (2024); https://doi.org/10.1039/D4RA03259D
- K. Martina, G. Cravotto and R.S. Varma, J. Org. Chem., 86, 13857 (2021); https://doi.org/10.1021/acs.joc.1c00865
- A.T. Kruszynska, Cryst. Growth Des., 13, 3892 (2013); https://doi.org/10.1021/cg400529s
- R.V. Sreeharsha, N. Dubey and S.V. Mohan, J. Clean. Prod., 414, 137526 (2023); https://doi.org/10.1016/j.jclepro.2023.137526
- R.S. Aal E Ali, J. Meng, M.E.I. Khan and X. Jiang, Artif. Intell. Chem., 2, 100049 (2024); https://doi.org/10.1016/j.aichem.2024.100049
- X. Jiang, S. Luo, K. Liao, S. Jiang, J. Ma, J. Jiang and Z. Shuai, Cell Rep. Phys. Sci., 5, 102049 (2024); https://doi.org/10.1016/j.xcrp.2024.102049
- C. He, C. Zhang, T. Bian, K. Jiao, W. Su, K.-J. Wu and A. Su, Processes, 11, 330 (2023); https://doi.org/10.3390/pr11020330
- T. Rodrigues, Drug Discov. Today. Technol., 32-33, 3 (2019); https://doi.org/10.1016/j.ddtec.2020.07.001
- V. Hassija, V. Chamola, A. Mahapatra, A. Singal, K. Huang, S. Scardapane, D. Goel, I. Spinelli, M. Mahmud and A. Hussain, Cognit. Comput., 16, 45 (2024); https://doi.org/10.1007/s12559-023-10179-8
- O. Kapustina, P. Burmakina, N. Gubina, N. Serov and V. Vinogradov, Artif. Intell. Chem., 2, 100072 (2024); https://doi.org/10.1016/j.aichem.2024.100072
- C.J. Taylor, A. Pomberger, K.C. Felton, R. Grainger, M. Barecka, T.W. Chamberlain, R.A. Bourne, C.N. Johnson and A.A. Lapkin, Chem. Rev., 123, 3089 (2023); https://doi.org/10.1021/acs.chemrev.2c00798
- D.M. Makarov, M.M. Lukanov, A.I. Rusanov, N.Z. Mamardashvili and A.A. Ksenofontov, J. Comput. Sci., 74, 102173 (2023); https://doi.org/10.1016/j.jocs.2023.102173
- Y.F. Shi, Z.X. Yang, S. Ma, P.-L. Kang, C. Shang, P. Hu and Z.-P. Liu, Engineering, 27, 70 (2023); https://doi.org/10.1016/j.eng.2023.04.013
- C.W. Coley, R. Barzilay, T.S. Jaakkola, W.H. Green and K.F. Jensen, ACS Cent. Sci., 3, 434 (2017); https://doi.org/10.1021/acscentsci.7b00064
- G. Birudala, G. Singh, S.A.R.J. Nayeem, S. Padmavathi, S.R. Pingali, Vaishali and R.D. Dighe, Asian J. Chem., 36, 1812 (2024); https://doi.org/10.14233/ajchem.2024.31666
- D.S. Karlov, S. Sosnin, I.V. Tetko and M.V. Fedorov, RSC Adv., 9, 5151 (2019); https://doi.org/10.1039/C8RA10182E
- IBM Research, IBM RXN for Chemistry: AI-driven tool for chemical reaction prediction; Retrieved from https://rxn.res.ibm.com
- B.A. Grzybowski, S. Szymkuc, E.P. Gajewska, K. Molga, P. Dittwald, A. Wolos and T. Klucznik, Chem, 4, 390 (2018); https://doi.org/10.1016/j.chempr.2018.02.024
- A. Kate, L.K. Sahu, J. Pandey, M. Mishra and P.K. Sharma, Curr. Res. Green Sustain., 5, 100248 (2022); https://doi.org/10.1016/j.crgsc.2021.100248
- L.H. Mou, T. Han, P.E.S. Smith, E. Sharman and J. Jiang, Adv. Sci., 10, e2301020 (2023); https://doi.org/10.1002/advs.202301020
- N.H. Park, M. Manica, J. Born, J.L. Hedrick, T. Erdmann, D.Y. Zubarev, N. Adell-Mill and P.L. Arrechea, Nat. Commun., 14, 3686 (2023); https://doi.org/10.1038/s41467-023-39396-3
- A. Mazheika, Y.G. Wang, R. Valero, F. Viñes, F. Illas, L.M. Ghiringhelli, S.V. Levchenko and M. Scheffler, Nat. Commun., 13, 419 (2022); https://doi.org/10.1038/s41467-022-28042-z
- N.S. Lai, Y.S. Tew, X. Zhong, J. Yin, J. Li, B. Yan and X. Wang, Ind. Eng. Chem. Res., 62, 17835 (2023); https://doi.org/10.1021/acs.iecr.3c02520
- J. Ferraz-Caetano, Curr. Organocatal., 9, e280722207054 (2022); https://doi.org/10.2174/2213337209666220728094248
- B. Markus, G.C. C, K. Andreas, K. Arkadij, L. Stefan, O. Gustav, S. Elina and S. Radka, ACS Catal., 13, 14454 (2023); https://doi.org/10.1021/acscatal.3c03417
- S. Gallarati, P. van Gerwen, R. Laplaza, L. Brey, A. Makaveev and C. Corminboeuf, Chem. Sci., 15, 3640 (2024); https://doi.org/10.1039/D3SC06208B
- J. Zhou and M. Huang, Chem. Soc. Rev., 53, 8202 (2024); https://doi.org/10.1039/D4CS00196F
- L.J. Diorazio, D.R.J. Hose and N.K. Adlington, Org. Process Res. Dev., 20, 760 (2016); https://doi.org/10.1021/acs.oprd.6b00015
- N. Winterton, Clean Technol. Environ. Policy, 23, 2499 (2021); https://doi.org/10.1007/s10098-021-02188-8
- H. Sels, H. De Smet and J. Geuens, Molecules, 25, 3037 (2020); https://doi.org/10.3390/molecules25133037
- Z. Song, H. Shi, X. Zhang and T. Zhou, Chem. Eng. Sci., 223, 115752 (2020); https://doi.org/10.1016/j.ces.2020.115752
- T. Lemaoui, T. Eid, A.S. Darwish, H.A. Arafat, F. Banat and I. AlNashef, Mater. Sci. Eng. Rep., 159, 100798 (2024); https://doi.org/10.1016/j.mser.2024.100798
- R.K. Henderson, C. Jiménez-González, D.J.C. Constable, S.R. Alston, G.G.A. Inglis, G. Fisher, J. Sherwood, S.P. Binks and A.D. Curzons, Green Chem., 13, 854 (2011); https://doi.org/10.1039/c0gc00918k
- K. Alfonsi, J. Colberg, P.J. Dunn, T. Fevig, S. Jennings, T.A. Johnson, H.P. Kleine, C. Knight, M.A. Nagy, D.A. Perry and M. Stefaniak, Green Chem., 10, 31 (2008); https://doi.org/10.1039/B711717E
- D. Prat, O. Pardigon, H.W. Flemming, S. Letestu, V. Ducandas, P. Isnard, E. Guntrum, T. Senac, S. Ruisseau, P. Cruciani and P. Hosek, Org. Process Res. Dev., 17, 1517 (2013); https://doi.org/10.1021/op4002565
- B. Huwaimel and A. Alobaida, Molecules, 27, 5140 (2022); https://doi.org/10.3390/molecules27165140
- O.V. Kharissova, B.I. Kharisov, C.M. Oliva González, Y.P. Méndez and I. López, R. Soc. Open Sci., 6, 191378 (2019); https://doi.org/10.1098/rsos.191378
- V.P. Ananikov, Artif. Intell. Chem., 2, 100075 (2024); https://doi.org/10.1016/j.aichem.2024.100075
- J. Liu and J.E. Hein, Nat. Synth., 2, 464 (2023); https://doi.org/10.1038/s44160-023-00335-1
- S.K. Kariofillis, S. Jiang, A.M. Zurañski, S.S. Gandhi, J.I. Martinez Alvarado and A.G. Doyle, J. Am. Chem. Soc., 144, 1045 (2022); https://doi.org/10.1021/jacs.1c12203
- P. Jorayev, D. Russo, J.D. Tibbetts, A.M. Schweidtmann, P. Deutsch, S.D. Bull and A.A. Lapkin, Chem. Eng. Sci., 247, 116938 (2022); https://doi.org/10.1016/j.ces.2021.116938
- F. Strieth-Kalthoff, S. Szymkuæ, K. Molga, A. Aspuru-Guzik, F. Glorius and B.A. Grzybowski, J. Am. Chem. Soc., 146, 11005 (2024); https://doi.org/10.1021/jacs.4c00338
- M.I. Jeraal, S. Sung and A.A. Lapkin, Chem. Methods, 1, 71 (2021); https://doi.org/10.1002/cmtd.202000044
- M.A. Hardy, B. Nan, O. Wiest and R. Sarpong, Tetrahedron, 104, 132584 (2022); https://doi.org/10.1016/j.tet.2021.132584
- G. Gricourt, P. Meyer, T. Duigou and J.L. Faulon, ACS Synth. Biol., 13, 2276 (2024); https://doi.org/10.1021/acssynbio.4c00091
- S. Ishida, K. Terayama, R. Kojima, K. Takasu and Y. Okuno, J. Chem. Inf. Model., 62, 1357 (2022); https://doi.org/10.1021/acs.jcim.1c01074
- V. Sinka, D.A. Cruz, J.M. López-Soria, V.S. Martín, P.O. Miranda and J.I. Padrón, eds.: D. Solé and I. Fernández, Advances in Transition-Metal Mediated Heterocyclic Synthesis, Academic Press, Chap. 5, pp 193-229 (2018); https://doi.org/10.1016/B978-0-12-811651-7.00005-4
- D.T. Ahneman, J.G. Estrada, S. Lin, S.D. Dreher and A.G. Doyle, Science, 360, 186 (2018); https://doi.org/10.1126/science.aar5169
- A.V. Kalikadien, C. Valsecchi, R. van Putten, T. Maes, M. Muuronen, N. Dyubankova, L. Lefort and E.A. Pidko, Chem. Sci., 15, 13618 (2024); https://doi.org/10.1039/D4SC03647F
- A. Smith, A. Keane, J.A. Dumesic, G.W. Huber and V.M. Zavala, Appl. Catal. B, 263, 118257 (2020); https://doi.org/10.1016/j.apcatb.2019.118257
- M. Suvarna and J. Pérez-Ramírez, Nat. Catal., 7, 624 (2024); https://doi.org/10.1038/s41929-024-01150-3
- Z.H. Jaffari, A. Abbas, S.M. Lam, S. Park, K. Chon, E.-S. Kim and K.H. Cho, J. Hazard. Mater., 442, 130031 (2023); https://doi.org/10.1016/j.jhazmat.2022.130031
- X. Li, Y. Che, L. Chen, T. Liu, K. Wang, L. Liu, H. Yang, E.O. Pyzer-Knapp and A.I. Cooper, Nat. Chem., 16, 1286 (2024); https://doi.org/10.1038/s41557-024-01546-5
- L.A. Pfaltzgraff and J.H. Clark, eds.: K. Waldron, Green Chemistry, Biorefineries and Second Generation Strategies for Reuse of Waste: An Overview, In: Advances in Biorefineries, Biomass and Waste Supply Chain Exploitation, Woodhead Publishing, Chap. 1, pp 3-33 (2014); https://doi.org/10.1533/9780857097385.1.3
- M. Meena, S. Shubham, K. Paritosh, N. Pareek and V. Vivekanand, Bioresour. Technol., 340, 125642 (2021); https://doi.org/10.1016/j.biortech.2021.125642
- K. Khandelwal, S. Nanda and A.K. Dalai, Environ. Chem. Lett., (2024); https://doi.org/10.1007/s10311-024-01767-7
- A.I. Osman, M. Nasr, M. Farghali, A.K. Rashwan, A. Abdelkader, A.H. Al-Muhtaseb, I. Ihara and D.W. Rooney, Environ. Chem. Lett., 22, 1005 (2024); https://doi.org/10.1007/s10311-024-01700-y
- S. Zhao, W. Xu and L. Chen, Fuel, 312, 122966 (2022); https://doi.org/10.1016/j.fuel.2021.122966
- P.R. Seidl and A.K. Goulart, Curr. Opin. Green Sustain. Chem., 26, 100366 (2020); https://doi.org/10.1016/j.cogsc.2020.100366
- D.K. Jana, S. Bhattacharjee, S. Roy, P. Dostál and B. Bej, Cleaner Energy Systems, 3, 100033 (2022); https://doi.org/10.1016/j.cles.2022.100033
- N. Sultana, S.M.Z. Hossain, H.A. Albalooshi, S.M.B. Chrouf, I.A. AlNajar, K.R. Alhindi, K.A. AlMofeez, S.A. Razzak and M.M. Hossain, Renew. Energy, 178, 1020 (2021); https://doi.org/10.1016/j.renene.2021.06.112
- V. Sharma, M.L. Tsai, C.W. Chen, P.-P. Sun, P. Nargotra and C.-D. Dong, Sci. Total Environ., 886, 163972 (2023); https://doi.org/10.1016/j.scitotenv.2023.163972
- A. Sonwai, P. Pholchan and N. Tippayawong, Bioresour. Technol., 383, 129235 (2023); https://doi.org/10.1016/j.biortech.2023.129235
- F. Peiretti and J.M. Brunel, ACS Omega, 3, 13263 (2018); https://doi.org/10.1021/acsomega.8b01773
- T.J. Struble, J.C. Alvarez, S.P. Brown, M. Chytil, J. Cisar, R.L. DesJarlais, O. Engkvist, S.A. Frank, D.R. Greve, D.J. Griffin, X. Hou, J.W. Johannes, C. Kreatsoulas, B. Lahue, M. Mathea, G. Mogk, C.A. Nicolaou, A.D. Palmer, D.J. Price, R.I. Robinson, S. Salentin, L. Xing, T. Jaakkola, W.H. Green, R. Barzilay, C.W. Coley and K.F. Jensen, J. Med. Chem., 63, 8667 (2020); https://doi.org/10.1021/acs.jmedchem.9b02120
- J. Kostal, B.W. Brooks, C.A. Smith and G. Devineni, iScience, 25, 105256 (2022); https://doi.org/10.1016/j.isci.2022.105256
- J.-A. Cordón-García, J. Alonso-Arévalo, R. Gómez-Díaz and D. Linder, Open Access eBooks, In: Social Reading Platforms, Applications, Clouds and Tags, Chandos Publishing Social Media Series, Chandos Publishing, Chap. 1, pp 121-141 (2013); https://doi.org/10.1016/B978-1-84334-726-2.50004-5
- M.H. Todd, Chem. Cent. J., 1, 3 (2007); https://doi.org/10.1186/1752-153X-1-3
- A. Jain, J. Montoya, S. Dwaraknath, N.E.R. Zimmermann, J. Dagdelen, M. Horton, P. Huck, D. Winston, S. Cholia, S.P. Ong and K. Persson, in eds.: W. Andreoni and S. Yip, The Materials Project: Accelerating Materials Design Through Theory-Driven Data and Tools, In: Handbook of Materials Modeling, Springer, Cham (2018); https://doi.org/10.1007/978-3-319-42913-7_60-1
- S.M. Kearnes, M.R. Maser, M. Wleklinski, A. Kast, A.G. Doyle, S.D. Dreher, J.M. Hawkins, K.F. Jensen and C.W. Coley, J. Am. Chem. Soc., 143, 18820 (2021); https://doi.org/10.1021/jacs.1c09820
- C. Liu, Y. Chen and F. Mo, Natl. Sci. Open, 3, 20230037 (2023); https://doi.org/10.1360/nso/20230037
- M.K. Khan, M. Raza, M. Shahbaz, I. Hussain, M.F. Khan, Z. Xie, S.S.A. Shah, A.K. Tareen, Z. Bashir and K. Khan, Front Chem., 12, 1408740 (2024); https://doi.org/10.3389/fchem.2024.1408740
- L. Longo, M. Brcic, F. Cabitza, J. Choi, R. Confalonieri, J.D. Ser, R. Guidotti, Y. Hayashi, F. Herrera, A. Holzinger, R. Jiang, H. Khosravi, F. Lecue, G. Malgieri, A. Páez, W. Samek, J. Schneider, T. Speith and S. Stumpf, Inf. Fusion, 106, 102301 (2024); https://doi.org/10.1016/j.inffus.2024.102301
- P. Kamya, I.V. Ozerov, F.W. Pun, K. Tretina, T. Fokina, S. Chen, V. Naumov, X. Long, S. Lin, M. Korzinkin, D. Polykovskiy, A. Aliper, F. Ren and A. Zhavoronkov, J. Chem. Inf. Model., 64, 3961 (2024); https://doi.org/10.1021/acs.jcim.3c01619
- S.M. Lundberg and S.I. Lee, Proceedings of the 31st International Conference on NeurIPS (formerly NIPS)., 30, 4765 (2017).
- J.F. Joung, M.H. Fong, J. Roh, Z. Tu, J. Bradshaw and C.W. Coley, Angew. Chem. Int. Ed., e202411296 (2024); https://doi.org/10.1002/anie.202411296
- E. Heid, K.P. Greenman, Y. Chung, S.-C. Li, D.E. Graff, F.H. Vermeire, H. Wu, W.H. Green and C.J. McGill, J. Chem. Inf. Model., 64, 9 (2024); https://doi.org/10.1021/acs.jcim.3c01250
- B.J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J.I.M. Alvarado, J.M. Janey, R.P. Adams and A.G. Doyle, Nature, 590, 89 (2021); https://doi.org/10.1038/s41586-021-03213-y
- B. Posinasetty, A.A. Jaiswal, R.P. Yejjella, H. Veluru, K. Bandarapalle and R.K. Kumarachari, Asian J. Chem., 36, 593 (2024); https://doi.org/10.14233/ajchem.2024.31092
- A. Kazakov, J.W. Magee, R.D. Chirico V. Diky, K.G. Kroenlein, C.D. Muzny and M.D. Frenkel, Ionic Liquids Database - ILThermo (v2.0), Ionic Liquids Database-ILThermo (v2.0) (2013); https://ilthermo.boulder. nist.gov (accessed on 31.08.2024).
- G. Tiwari, A. Khanna, V.K. Mishra and R. Sagar, RSC Adv., 13, 32858 (2023); https://doi.org/10.1039/D3RA05986C
- J.A. Okolie, Curr. Opin. Green Sustain. Chem., 47, 100928 (2024); https://doi.org/10.1016/j.cogsc.2024.100928
- P. Schwaller, T. Laino, T. Gaudin, P. Bolgar, C.A. Hunter, C. Bekas and A.A. Lee, ACS Cent. Sci., 5, 1572 (2019); https://doi.org/10.1021/acscentsci.9b00576
- G. Casadevall, C. Duran and S. Osuna, JACS Au, 3, 1554 (2023); https://doi.org/10.1021/jacsau.3c00188
- V. Kovalishyn, N. Abramenko, I. Kopernyk, L. Charochkina, L. Metelytsia, I.V. Tetko, W. Peijnenburg and L. Kustov, Food Chem. Toxicol., 112, 507 (2018); https://doi.org/10.1016/j.fct.2017.08.008
- Y. Ali, T. Chakrabarti, J. Shreemali, N.V. Koralkar, R. Kumar, S. Satpathy, P. Chakrabarti, S. Poddar, S.K. Pattanayak, A.A. Elngar, X. Jin and V. Ravi, Desalination Water Treat., 319, 100458 (2024); https://doi.org/10.1016/j.dwt.2024.100458
- J. Kim, G.H. Gu, J. Noh, S. Kim, S. Gim, J. Choi and Y. Jung, Chem. Sci., 12, 11028 (2021); https://doi.org/10.1039/D1SC01049B
- P.T. Anastas and J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press: New York (1998).
- J.M. Weber, Z. Guo, C. Zhang, A.M. Schweidtmann and A.A. Lapkin, Chem. Soc. Rev., 50, 12013 (2021); https://doi.org/10.1039/D1CS00477H
- S.Q. Zhang, L.C. Xu, S.W. Li, J.C.A. Oliveira, X. Li, L. Ackermann and X. Hong, Chem. Eur. J., 29, e202202834 (2023); https://doi.org/10.1002/chem.202202834
- IBM Partnership, University of Toronto; https://bluedoor.utoronto.ca/case-studies/ibm-2/ (accessed Aug 10,2024))
- IBM RXN for Chemistry; https://rxn.res.ibm.com (accessed Aug 10, 2024).
- M. Punithan, U of T-IBM Quantum Computing Conference: Bridging the Academia-Industry gap (2023); https://www.artsci.utoronto.ca/news/u-t-ibm-quantum-computing-conference-bridging-academia-industry-gap
- E.K. Smith, Chem. Sci., 15, 5143 (2023); https://doi.org/10.1039/D3SC04928K
- E. Hermann, G. Hermann and J.C. Tremblay, Sci. Eng. Ethics, 27, 45 (2021); https://doi.org/10.1007/s11948-021-00325-6
- M. Kamkar, K.C. Leonard, I. Ferrer, S.C.J. Loo, E.J. Biddinger, D. Brady, D.J. Carrier, N. Gathergood, H. Han, I. Hermans, K.K.M. Hii, B.J. Hwang, W. Loh, M.A.R. Meier, A.C. Marr, G.N. Newton, W.V. Srubar III, N. Yan, M.K.C. Tam, J. Chen, A.H. Moores, B. Subramaniam, P. Licence and J.F. Serrano, ACS Sustain. Chem.& Eng., 12, 2924 (2024); https://doi.org/10.1021/acssuschemeng.4c01004
- E. Strubell, A. Ganesh and A. McCallum, Proc. Conf. AAAI Artif. Intell., 34, 13693 (2020); https://doi.org/10.1609/aaai.v34i09.7123
- C.W. Coley, N.S. Eyke and K.F. Jensen, Angew. Chem. Int. Ed., 59, 23414 (2020); https://doi.org/10.1002/anie.201909989
- S. Wang and J. Jiang, ACS Catal., 13, 7428 (2023); https://doi.org/10.1021/acscatal.3c00611
- J. Lin, Z. Liu, Y. Guo, S. Wang, Z. Tao, X. Xue, R. Li, S. Feng, L. Wang, J. Liu, H. Gao, G. Wang and Y. Su, Nano Today, 49, 101802 (2023); https://doi.org/10.1016/j.nantod.2023.101802
- L.K. Vora, A.D. Gholap, K. Jetha, R.R.S. Thakur, H.K. Solanki and V.P. Chavda, Pharmaceutics, 15, 1916 (2023); https://doi.org/10.3390/pharmaceutics15071916
- P. Suriyaamporn, B. Pamornpathomkul, P. Patrojanasophon, T. Ngawhirunpat, T. Rojanarata and P. Opanasopit, AAPS PharmSciTech, 25, 188 (2024); https://doi.org/10.1208/s12249-024-02901-y
- P. Pradeep, R. Judson, D.M. DeMarini, N. Keshava, T.M. Martin, J. Dean, C.F. Gibbons, A. Simha, S.H. Warren, M.R. Gwinn and G. Patlewicz, Comput. Toxicol., 18, 100167 (2021); https://doi.org/10.1016/j.comtox.2021.100167
- H. Wen, S. Nan, D. Wu, Q. Sun, Y. Tong, J. Zhang, S. Jin and W. Shen, Ind. Eng. Chem. Res., 62, 20473 (2023); https://doi.org/10.1021/acs.iecr.3c02305
- R. Gómez-Bombarelli, J.N. Wei, D. Duvenaud, J.M. Hernández-Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T.D. Hirzel, R.P. Adams and A. Aspuru-Guzik, ACS Cent. Sci., 4, 268 (2018); https://doi.org/10.1021/acscentsci.7b00572
- S.M. Kearnes, M.R. Maser, M. Wleklinski, A. Kast, A.G. Doyle, S.D. Dreher, J.M. Hawkins, K.F. Jensen and C.W. Coley, J. Am. Chem. Soc., 143, 18820 (2021); https://doi.org/10.1021/jacs.1c09820
- B. Singh, M. Crasto, K. Ravi and S. Singh, Intelligent Pharm., 2, 598 (2024); https://doi.org/10.1016/j.ipha.2024.05.005
References
R. Mestres, Environ. Sci. Pollut. Res. Int., 12, 128 (2005); https://doi.org/10.1065/espr2005.04.253
B.A. de Marco, B.S. Rechelo, E.G. Tótoli, A.C. Kogawa and H.R.N. Salgado, Saudi Pharm. J., 27, 1 (2019); https://doi.org/10.1016/j.jsps.2018.07.011
T.L. Chen, H. Kim, S.Y. Pan, P.-C. Tseng, Y.-P. Lin and P.-C. Chiang, Sci. Total Environ., 716, 136998 (2020); https://doi.org/10.1016/j.scitotenv.2020.136998
K.E. Jaeger and M.T. Reetz, Curr. Opin. Chem. Biol., 4, 68 (2000); https://doi.org/10.1016/s1367-5931(99)00054-x
P.A. Uwineza and A. Waskiewicz, Molecules, 25, 3847 (2020); https://doi.org/10.3390/molecules25173847
F. Mohamadpour and A. M. Amani, RSC Adv., 14, 20609 (2024); https://doi.org/10.1039/D4RA03259D
K. Martina, G. Cravotto and R.S. Varma, J. Org. Chem., 86, 13857 (2021); https://doi.org/10.1021/acs.joc.1c00865
A.T. Kruszynska, Cryst. Growth Des., 13, 3892 (2013); https://doi.org/10.1021/cg400529s
R.V. Sreeharsha, N. Dubey and S.V. Mohan, J. Clean. Prod., 414, 137526 (2023); https://doi.org/10.1016/j.jclepro.2023.137526
R.S. Aal E Ali, J. Meng, M.E.I. Khan and X. Jiang, Artif. Intell. Chem., 2, 100049 (2024); https://doi.org/10.1016/j.aichem.2024.100049
X. Jiang, S. Luo, K. Liao, S. Jiang, J. Ma, J. Jiang and Z. Shuai, Cell Rep. Phys. Sci., 5, 102049 (2024); https://doi.org/10.1016/j.xcrp.2024.102049
C. He, C. Zhang, T. Bian, K. Jiao, W. Su, K.-J. Wu and A. Su, Processes, 11, 330 (2023); https://doi.org/10.3390/pr11020330
T. Rodrigues, Drug Discov. Today. Technol., 32-33, 3 (2019); https://doi.org/10.1016/j.ddtec.2020.07.001
V. Hassija, V. Chamola, A. Mahapatra, A. Singal, K. Huang, S. Scardapane, D. Goel, I. Spinelli, M. Mahmud and A. Hussain, Cognit. Comput., 16, 45 (2024); https://doi.org/10.1007/s12559-023-10179-8
O. Kapustina, P. Burmakina, N. Gubina, N. Serov and V. Vinogradov, Artif. Intell. Chem., 2, 100072 (2024); https://doi.org/10.1016/j.aichem.2024.100072
C.J. Taylor, A. Pomberger, K.C. Felton, R. Grainger, M. Barecka, T.W. Chamberlain, R.A. Bourne, C.N. Johnson and A.A. Lapkin, Chem. Rev., 123, 3089 (2023); https://doi.org/10.1021/acs.chemrev.2c00798
D.M. Makarov, M.M. Lukanov, A.I. Rusanov, N.Z. Mamardashvili and A.A. Ksenofontov, J. Comput. Sci., 74, 102173 (2023); https://doi.org/10.1016/j.jocs.2023.102173
Y.F. Shi, Z.X. Yang, S. Ma, P.-L. Kang, C. Shang, P. Hu and Z.-P. Liu, Engineering, 27, 70 (2023); https://doi.org/10.1016/j.eng.2023.04.013
C.W. Coley, R. Barzilay, T.S. Jaakkola, W.H. Green and K.F. Jensen, ACS Cent. Sci., 3, 434 (2017); https://doi.org/10.1021/acscentsci.7b00064
G. Birudala, G. Singh, S.A.R.J. Nayeem, S. Padmavathi, S.R. Pingali, Vaishali and R.D. Dighe, Asian J. Chem., 36, 1812 (2024); https://doi.org/10.14233/ajchem.2024.31666
D.S. Karlov, S. Sosnin, I.V. Tetko and M.V. Fedorov, RSC Adv., 9, 5151 (2019); https://doi.org/10.1039/C8RA10182E
IBM Research, IBM RXN for Chemistry: AI-driven tool for chemical reaction prediction; Retrieved from https://rxn.res.ibm.com
B.A. Grzybowski, S. Szymkuc, E.P. Gajewska, K. Molga, P. Dittwald, A. Wolos and T. Klucznik, Chem, 4, 390 (2018); https://doi.org/10.1016/j.chempr.2018.02.024
A. Kate, L.K. Sahu, J. Pandey, M. Mishra and P.K. Sharma, Curr. Res. Green Sustain., 5, 100248 (2022); https://doi.org/10.1016/j.crgsc.2021.100248
L.H. Mou, T. Han, P.E.S. Smith, E. Sharman and J. Jiang, Adv. Sci., 10, e2301020 (2023); https://doi.org/10.1002/advs.202301020
N.H. Park, M. Manica, J. Born, J.L. Hedrick, T. Erdmann, D.Y. Zubarev, N. Adell-Mill and P.L. Arrechea, Nat. Commun., 14, 3686 (2023); https://doi.org/10.1038/s41467-023-39396-3
A. Mazheika, Y.G. Wang, R. Valero, F. Viñes, F. Illas, L.M. Ghiringhelli, S.V. Levchenko and M. Scheffler, Nat. Commun., 13, 419 (2022); https://doi.org/10.1038/s41467-022-28042-z
N.S. Lai, Y.S. Tew, X. Zhong, J. Yin, J. Li, B. Yan and X. Wang, Ind. Eng. Chem. Res., 62, 17835 (2023); https://doi.org/10.1021/acs.iecr.3c02520
J. Ferraz-Caetano, Curr. Organocatal., 9, e280722207054 (2022); https://doi.org/10.2174/2213337209666220728094248
B. Markus, G.C. C, K. Andreas, K. Arkadij, L. Stefan, O. Gustav, S. Elina and S. Radka, ACS Catal., 13, 14454 (2023); https://doi.org/10.1021/acscatal.3c03417
S. Gallarati, P. van Gerwen, R. Laplaza, L. Brey, A. Makaveev and C. Corminboeuf, Chem. Sci., 15, 3640 (2024); https://doi.org/10.1039/D3SC06208B
J. Zhou and M. Huang, Chem. Soc. Rev., 53, 8202 (2024); https://doi.org/10.1039/D4CS00196F
L.J. Diorazio, D.R.J. Hose and N.K. Adlington, Org. Process Res. Dev., 20, 760 (2016); https://doi.org/10.1021/acs.oprd.6b00015
N. Winterton, Clean Technol. Environ. Policy, 23, 2499 (2021); https://doi.org/10.1007/s10098-021-02188-8
H. Sels, H. De Smet and J. Geuens, Molecules, 25, 3037 (2020); https://doi.org/10.3390/molecules25133037
Z. Song, H. Shi, X. Zhang and T. Zhou, Chem. Eng. Sci., 223, 115752 (2020); https://doi.org/10.1016/j.ces.2020.115752
T. Lemaoui, T. Eid, A.S. Darwish, H.A. Arafat, F. Banat and I. AlNashef, Mater. Sci. Eng. Rep., 159, 100798 (2024); https://doi.org/10.1016/j.mser.2024.100798
R.K. Henderson, C. Jiménez-González, D.J.C. Constable, S.R. Alston, G.G.A. Inglis, G. Fisher, J. Sherwood, S.P. Binks and A.D. Curzons, Green Chem., 13, 854 (2011); https://doi.org/10.1039/c0gc00918k
K. Alfonsi, J. Colberg, P.J. Dunn, T. Fevig, S. Jennings, T.A. Johnson, H.P. Kleine, C. Knight, M.A. Nagy, D.A. Perry and M. Stefaniak, Green Chem., 10, 31 (2008); https://doi.org/10.1039/B711717E
D. Prat, O. Pardigon, H.W. Flemming, S. Letestu, V. Ducandas, P. Isnard, E. Guntrum, T. Senac, S. Ruisseau, P. Cruciani and P. Hosek, Org. Process Res. Dev., 17, 1517 (2013); https://doi.org/10.1021/op4002565
B. Huwaimel and A. Alobaida, Molecules, 27, 5140 (2022); https://doi.org/10.3390/molecules27165140
O.V. Kharissova, B.I. Kharisov, C.M. Oliva González, Y.P. Méndez and I. López, R. Soc. Open Sci., 6, 191378 (2019); https://doi.org/10.1098/rsos.191378
V.P. Ananikov, Artif. Intell. Chem., 2, 100075 (2024); https://doi.org/10.1016/j.aichem.2024.100075
J. Liu and J.E. Hein, Nat. Synth., 2, 464 (2023); https://doi.org/10.1038/s44160-023-00335-1
S.K. Kariofillis, S. Jiang, A.M. Zurañski, S.S. Gandhi, J.I. Martinez Alvarado and A.G. Doyle, J. Am. Chem. Soc., 144, 1045 (2022); https://doi.org/10.1021/jacs.1c12203
P. Jorayev, D. Russo, J.D. Tibbetts, A.M. Schweidtmann, P. Deutsch, S.D. Bull and A.A. Lapkin, Chem. Eng. Sci., 247, 116938 (2022); https://doi.org/10.1016/j.ces.2021.116938
F. Strieth-Kalthoff, S. Szymkuæ, K. Molga, A. Aspuru-Guzik, F. Glorius and B.A. Grzybowski, J. Am. Chem. Soc., 146, 11005 (2024); https://doi.org/10.1021/jacs.4c00338
M.I. Jeraal, S. Sung and A.A. Lapkin, Chem. Methods, 1, 71 (2021); https://doi.org/10.1002/cmtd.202000044
M.A. Hardy, B. Nan, O. Wiest and R. Sarpong, Tetrahedron, 104, 132584 (2022); https://doi.org/10.1016/j.tet.2021.132584
G. Gricourt, P. Meyer, T. Duigou and J.L. Faulon, ACS Synth. Biol., 13, 2276 (2024); https://doi.org/10.1021/acssynbio.4c00091
S. Ishida, K. Terayama, R. Kojima, K. Takasu and Y. Okuno, J. Chem. Inf. Model., 62, 1357 (2022); https://doi.org/10.1021/acs.jcim.1c01074
V. Sinka, D.A. Cruz, J.M. López-Soria, V.S. Martín, P.O. Miranda and J.I. Padrón, eds.: D. Solé and I. Fernández, Advances in Transition-Metal Mediated Heterocyclic Synthesis, Academic Press, Chap. 5, pp 193-229 (2018); https://doi.org/10.1016/B978-0-12-811651-7.00005-4
D.T. Ahneman, J.G. Estrada, S. Lin, S.D. Dreher and A.G. Doyle, Science, 360, 186 (2018); https://doi.org/10.1126/science.aar5169
A.V. Kalikadien, C. Valsecchi, R. van Putten, T. Maes, M. Muuronen, N. Dyubankova, L. Lefort and E.A. Pidko, Chem. Sci., 15, 13618 (2024); https://doi.org/10.1039/D4SC03647F
A. Smith, A. Keane, J.A. Dumesic, G.W. Huber and V.M. Zavala, Appl. Catal. B, 263, 118257 (2020); https://doi.org/10.1016/j.apcatb.2019.118257
M. Suvarna and J. Pérez-Ramírez, Nat. Catal., 7, 624 (2024); https://doi.org/10.1038/s41929-024-01150-3
Z.H. Jaffari, A. Abbas, S.M. Lam, S. Park, K. Chon, E.-S. Kim and K.H. Cho, J. Hazard. Mater., 442, 130031 (2023); https://doi.org/10.1016/j.jhazmat.2022.130031
X. Li, Y. Che, L. Chen, T. Liu, K. Wang, L. Liu, H. Yang, E.O. Pyzer-Knapp and A.I. Cooper, Nat. Chem., 16, 1286 (2024); https://doi.org/10.1038/s41557-024-01546-5
L.A. Pfaltzgraff and J.H. Clark, eds.: K. Waldron, Green Chemistry, Biorefineries and Second Generation Strategies for Reuse of Waste: An Overview, In: Advances in Biorefineries, Biomass and Waste Supply Chain Exploitation, Woodhead Publishing, Chap. 1, pp 3-33 (2014); https://doi.org/10.1533/9780857097385.1.3
M. Meena, S. Shubham, K. Paritosh, N. Pareek and V. Vivekanand, Bioresour. Technol., 340, 125642 (2021); https://doi.org/10.1016/j.biortech.2021.125642
K. Khandelwal, S. Nanda and A.K. Dalai, Environ. Chem. Lett., (2024); https://doi.org/10.1007/s10311-024-01767-7
A.I. Osman, M. Nasr, M. Farghali, A.K. Rashwan, A. Abdelkader, A.H. Al-Muhtaseb, I. Ihara and D.W. Rooney, Environ. Chem. Lett., 22, 1005 (2024); https://doi.org/10.1007/s10311-024-01700-y
S. Zhao, W. Xu and L. Chen, Fuel, 312, 122966 (2022); https://doi.org/10.1016/j.fuel.2021.122966
P.R. Seidl and A.K. Goulart, Curr. Opin. Green Sustain. Chem., 26, 100366 (2020); https://doi.org/10.1016/j.cogsc.2020.100366
D.K. Jana, S. Bhattacharjee, S. Roy, P. Dostál and B. Bej, Cleaner Energy Systems, 3, 100033 (2022); https://doi.org/10.1016/j.cles.2022.100033
N. Sultana, S.M.Z. Hossain, H.A. Albalooshi, S.M.B. Chrouf, I.A. AlNajar, K.R. Alhindi, K.A. AlMofeez, S.A. Razzak and M.M. Hossain, Renew. Energy, 178, 1020 (2021); https://doi.org/10.1016/j.renene.2021.06.112
V. Sharma, M.L. Tsai, C.W. Chen, P.-P. Sun, P. Nargotra and C.-D. Dong, Sci. Total Environ., 886, 163972 (2023); https://doi.org/10.1016/j.scitotenv.2023.163972
A. Sonwai, P. Pholchan and N. Tippayawong, Bioresour. Technol., 383, 129235 (2023); https://doi.org/10.1016/j.biortech.2023.129235
F. Peiretti and J.M. Brunel, ACS Omega, 3, 13263 (2018); https://doi.org/10.1021/acsomega.8b01773
T.J. Struble, J.C. Alvarez, S.P. Brown, M. Chytil, J. Cisar, R.L. DesJarlais, O. Engkvist, S.A. Frank, D.R. Greve, D.J. Griffin, X. Hou, J.W. Johannes, C. Kreatsoulas, B. Lahue, M. Mathea, G. Mogk, C.A. Nicolaou, A.D. Palmer, D.J. Price, R.I. Robinson, S. Salentin, L. Xing, T. Jaakkola, W.H. Green, R. Barzilay, C.W. Coley and K.F. Jensen, J. Med. Chem., 63, 8667 (2020); https://doi.org/10.1021/acs.jmedchem.9b02120
J. Kostal, B.W. Brooks, C.A. Smith and G. Devineni, iScience, 25, 105256 (2022); https://doi.org/10.1016/j.isci.2022.105256
J.-A. Cordón-García, J. Alonso-Arévalo, R. Gómez-Díaz and D. Linder, Open Access eBooks, In: Social Reading Platforms, Applications, Clouds and Tags, Chandos Publishing Social Media Series, Chandos Publishing, Chap. 1, pp 121-141 (2013); https://doi.org/10.1016/B978-1-84334-726-2.50004-5
M.H. Todd, Chem. Cent. J., 1, 3 (2007); https://doi.org/10.1186/1752-153X-1-3
A. Jain, J. Montoya, S. Dwaraknath, N.E.R. Zimmermann, J. Dagdelen, M. Horton, P. Huck, D. Winston, S. Cholia, S.P. Ong and K. Persson, in eds.: W. Andreoni and S. Yip, The Materials Project: Accelerating Materials Design Through Theory-Driven Data and Tools, In: Handbook of Materials Modeling, Springer, Cham (2018); https://doi.org/10.1007/978-3-319-42913-7_60-1
S.M. Kearnes, M.R. Maser, M. Wleklinski, A. Kast, A.G. Doyle, S.D. Dreher, J.M. Hawkins, K.F. Jensen and C.W. Coley, J. Am. Chem. Soc., 143, 18820 (2021); https://doi.org/10.1021/jacs.1c09820
C. Liu, Y. Chen and F. Mo, Natl. Sci. Open, 3, 20230037 (2023); https://doi.org/10.1360/nso/20230037
M.K. Khan, M. Raza, M. Shahbaz, I. Hussain, M.F. Khan, Z. Xie, S.S.A. Shah, A.K. Tareen, Z. Bashir and K. Khan, Front Chem., 12, 1408740 (2024); https://doi.org/10.3389/fchem.2024.1408740
L. Longo, M. Brcic, F. Cabitza, J. Choi, R. Confalonieri, J.D. Ser, R. Guidotti, Y. Hayashi, F. Herrera, A. Holzinger, R. Jiang, H. Khosravi, F. Lecue, G. Malgieri, A. Páez, W. Samek, J. Schneider, T. Speith and S. Stumpf, Inf. Fusion, 106, 102301 (2024); https://doi.org/10.1016/j.inffus.2024.102301
P. Kamya, I.V. Ozerov, F.W. Pun, K. Tretina, T. Fokina, S. Chen, V. Naumov, X. Long, S. Lin, M. Korzinkin, D. Polykovskiy, A. Aliper, F. Ren and A. Zhavoronkov, J. Chem. Inf. Model., 64, 3961 (2024); https://doi.org/10.1021/acs.jcim.3c01619
S.M. Lundberg and S.I. Lee, Proceedings of the 31st International Conference on NeurIPS (formerly NIPS)., 30, 4765 (2017).
J.F. Joung, M.H. Fong, J. Roh, Z. Tu, J. Bradshaw and C.W. Coley, Angew. Chem. Int. Ed., e202411296 (2024); https://doi.org/10.1002/anie.202411296
E. Heid, K.P. Greenman, Y. Chung, S.-C. Li, D.E. Graff, F.H. Vermeire, H. Wu, W.H. Green and C.J. McGill, J. Chem. Inf. Model., 64, 9 (2024); https://doi.org/10.1021/acs.jcim.3c01250
B.J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J.I.M. Alvarado, J.M. Janey, R.P. Adams and A.G. Doyle, Nature, 590, 89 (2021); https://doi.org/10.1038/s41586-021-03213-y
B. Posinasetty, A.A. Jaiswal, R.P. Yejjella, H. Veluru, K. Bandarapalle and R.K. Kumarachari, Asian J. Chem., 36, 593 (2024); https://doi.org/10.14233/ajchem.2024.31092
A. Kazakov, J.W. Magee, R.D. Chirico V. Diky, K.G. Kroenlein, C.D. Muzny and M.D. Frenkel, Ionic Liquids Database - ILThermo (v2.0), Ionic Liquids Database-ILThermo (v2.0) (2013); https://ilthermo.boulder. nist.gov (accessed on 31.08.2024).
G. Tiwari, A. Khanna, V.K. Mishra and R. Sagar, RSC Adv., 13, 32858 (2023); https://doi.org/10.1039/D3RA05986C
J.A. Okolie, Curr. Opin. Green Sustain. Chem., 47, 100928 (2024); https://doi.org/10.1016/j.cogsc.2024.100928
P. Schwaller, T. Laino, T. Gaudin, P. Bolgar, C.A. Hunter, C. Bekas and A.A. Lee, ACS Cent. Sci., 5, 1572 (2019); https://doi.org/10.1021/acscentsci.9b00576
G. Casadevall, C. Duran and S. Osuna, JACS Au, 3, 1554 (2023); https://doi.org/10.1021/jacsau.3c00188
V. Kovalishyn, N. Abramenko, I. Kopernyk, L. Charochkina, L. Metelytsia, I.V. Tetko, W. Peijnenburg and L. Kustov, Food Chem. Toxicol., 112, 507 (2018); https://doi.org/10.1016/j.fct.2017.08.008
Y. Ali, T. Chakrabarti, J. Shreemali, N.V. Koralkar, R. Kumar, S. Satpathy, P. Chakrabarti, S. Poddar, S.K. Pattanayak, A.A. Elngar, X. Jin and V. Ravi, Desalination Water Treat., 319, 100458 (2024); https://doi.org/10.1016/j.dwt.2024.100458
J. Kim, G.H. Gu, J. Noh, S. Kim, S. Gim, J. Choi and Y. Jung, Chem. Sci., 12, 11028 (2021); https://doi.org/10.1039/D1SC01049B
P.T. Anastas and J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press: New York (1998).
J.M. Weber, Z. Guo, C. Zhang, A.M. Schweidtmann and A.A. Lapkin, Chem. Soc. Rev., 50, 12013 (2021); https://doi.org/10.1039/D1CS00477H
S.Q. Zhang, L.C. Xu, S.W. Li, J.C.A. Oliveira, X. Li, L. Ackermann and X. Hong, Chem. Eur. J., 29, e202202834 (2023); https://doi.org/10.1002/chem.202202834
IBM Partnership, University of Toronto; https://bluedoor.utoronto.ca/case-studies/ibm-2/ (accessed Aug 10,2024))
IBM RXN for Chemistry; https://rxn.res.ibm.com (accessed Aug 10, 2024).
M. Punithan, U of T-IBM Quantum Computing Conference: Bridging the Academia-Industry gap (2023); https://www.artsci.utoronto.ca/news/u-t-ibm-quantum-computing-conference-bridging-academia-industry-gap
E.K. Smith, Chem. Sci., 15, 5143 (2023); https://doi.org/10.1039/D3SC04928K
E. Hermann, G. Hermann and J.C. Tremblay, Sci. Eng. Ethics, 27, 45 (2021); https://doi.org/10.1007/s11948-021-00325-6
M. Kamkar, K.C. Leonard, I. Ferrer, S.C.J. Loo, E.J. Biddinger, D. Brady, D.J. Carrier, N. Gathergood, H. Han, I. Hermans, K.K.M. Hii, B.J. Hwang, W. Loh, M.A.R. Meier, A.C. Marr, G.N. Newton, W.V. Srubar III, N. Yan, M.K.C. Tam, J. Chen, A.H. Moores, B. Subramaniam, P. Licence and J.F. Serrano, ACS Sustain. Chem.& Eng., 12, 2924 (2024); https://doi.org/10.1021/acssuschemeng.4c01004
E. Strubell, A. Ganesh and A. McCallum, Proc. Conf. AAAI Artif. Intell., 34, 13693 (2020); https://doi.org/10.1609/aaai.v34i09.7123
C.W. Coley, N.S. Eyke and K.F. Jensen, Angew. Chem. Int. Ed., 59, 23414 (2020); https://doi.org/10.1002/anie.201909989
S. Wang and J. Jiang, ACS Catal., 13, 7428 (2023); https://doi.org/10.1021/acscatal.3c00611
J. Lin, Z. Liu, Y. Guo, S. Wang, Z. Tao, X. Xue, R. Li, S. Feng, L. Wang, J. Liu, H. Gao, G. Wang and Y. Su, Nano Today, 49, 101802 (2023); https://doi.org/10.1016/j.nantod.2023.101802
L.K. Vora, A.D. Gholap, K. Jetha, R.R.S. Thakur, H.K. Solanki and V.P. Chavda, Pharmaceutics, 15, 1916 (2023); https://doi.org/10.3390/pharmaceutics15071916
P. Suriyaamporn, B. Pamornpathomkul, P. Patrojanasophon, T. Ngawhirunpat, T. Rojanarata and P. Opanasopit, AAPS PharmSciTech, 25, 188 (2024); https://doi.org/10.1208/s12249-024-02901-y
P. Pradeep, R. Judson, D.M. DeMarini, N. Keshava, T.M. Martin, J. Dean, C.F. Gibbons, A. Simha, S.H. Warren, M.R. Gwinn and G. Patlewicz, Comput. Toxicol., 18, 100167 (2021); https://doi.org/10.1016/j.comtox.2021.100167
H. Wen, S. Nan, D. Wu, Q. Sun, Y. Tong, J. Zhang, S. Jin and W. Shen, Ind. Eng. Chem. Res., 62, 20473 (2023); https://doi.org/10.1021/acs.iecr.3c02305
R. Gómez-Bombarelli, J.N. Wei, D. Duvenaud, J.M. Hernández-Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T.D. Hirzel, R.P. Adams and A. Aspuru-Guzik, ACS Cent. Sci., 4, 268 (2018); https://doi.org/10.1021/acscentsci.7b00572
S.M. Kearnes, M.R. Maser, M. Wleklinski, A. Kast, A.G. Doyle, S.D. Dreher, J.M. Hawkins, K.F. Jensen and C.W. Coley, J. Am. Chem. Soc., 143, 18820 (2021); https://doi.org/10.1021/jacs.1c09820
B. Singh, M. Crasto, K. Ravi and S. Singh, Intelligent Pharm., 2, 598 (2024); https://doi.org/10.1016/j.ipha.2024.05.005