Copyright (c) 2024 JAYASREE KOMARA, Jaya Prasanthi Karumuri, Ravikanth Tandra, Santhosh Thota
This work is licensed under a Creative Commons Attribution 4.0 International License.
Amorphous Zirconium-Zinc Bimetallic Metal Organic Framework based Fluorescent Sensor for Sensing of Ceftriaxone, Metronidazole and Ornidazole Antibiotics
Corresponding Author(s) : Jaya Prasanthi Karumuri
Asian Journal of Chemistry,
Vol. 36 No. 12 (2024): Vol 36 Issue 12, 2024
Abstract
It is essential to have both sensitive and selective antibiotic sensor, as the overuse of antibiotics has escalated in the last few years, endangering both human health and the environment. This work produced a hydrostable amorphous bimetallic metal organic framework (Zr-Zn-EDTA), which is employed as a fluorescence sensor using a solvothermal approach. Zr-Zn-EDTA bimetallic metal organic framework effectively quenches ceftriaxone, metronidazole and ornidazole among the five antibiotics, with low detection limits (LOD) 4.9 × 10–7 M for ceftriaxone, 5.4 × 10–7 M for metronidazole and 6.05 × 10–7 M for ornidazole, respectively. Moreover, Zr-Zn-EDTA exhibits good selectivity and recyclability for the detection of antibiotics including metronidazole, ornidazole and ceftriaxone. Specifically, a comprehensive analysis of the quenching mechanism has been shown, which might offer a clear comprehension for the identification of the ensuing antibiotics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Almasi, N. Kiraly, V. Zelenak, M. Vilkova and S. Bourrelly, RSC Adv., 11, 20137 (2021); https://doi.org/10.1039/D1RA02938J
- T.D. Bennett and A.K. Cheetham, Acc. Chem. Res., 47, 1555 (2014); https://doi.org/10.1021/ar5000314
- C. Orellana-Tavra, E.F. Baxter, T. Tian, T.D. Bennett, N.K.H. Slater, A.K. Cheetham and D. Fairen-Jimenez, Chem. Commun., 51, 13878 (2015); https://doi.org/10.1039/C5CC05237H
- T.D. Bennett, P.J. Saines, D.A. Keen, J.C. Tan and A.K. Cheetham, Chem. Eur. J., 19, 7049 (2013); https://doi.org/10.1002/chem.201300216
- F. Yang, W. Li and B. Tang, J. Alloys Compd., 733, 8 (2018); https://doi.org/10.1016/j.jallcom.2017.10.129
- X. Zhang, H. Li, X. Lv, J. Xu, Y. Wang, C. He, N. Liu, Y. Yang and Y. Wang, Chem. Eur. J., 24, 8822 (2018); https://doi.org/10.1002/chem.201800773
- Y. Jiao, J. Pei, D. Chen, C. Yan, Y. Hu, Q. Zhang and G. Chen, J. Mater. Chem. A Mater. Energy Sustain., 5, 1094 (2017); https://doi.org/10.1039/C6TA09805C
- S. Mottola, A. Mancuso, O. Sacco, V. Vaiano and I. De Marco, Catalysts, 13, 1173 (2023); https://doi.org/10.3390/catal13081173
- M. Farré, L. Kantiani, M. Petrovic, S. Pérez and D. Barceló, J. Chromatogr. A, 1259, 86 (2012); https://doi.org/10.1016/j.chroma.2012.07.024
- M. González-Pleiter, S. Gonzalo, I. Rodea-Palomares, F. Leganés, R. Rosal, K. Boltes, E. Marco and F. Fernández-Piñas, Water Res., 47, 2050 (2013); https://doi.org/10.1016/j.watres.2013.01.020
- R. Meffe and I. de Bustamante, Sci. Total Environ., 481, 280 (2014); https://doi.org/10.1016/j.scitotenv.2014.02.053
- P. Karungamye, A. Rugaika, K. Mtei and R. Machunda, J. Xenobiot., 12, 223 (2022); https://doi.org/10.3390/jox12030017
- T. Kokulnathan and S.M. Chen, ACS Appl. Mater. Interfaces, 11, 7893 (2019); https://doi.org/10.1021/acsami.8b09204
- Y. Zhang, L. Zhao, Y. Yang and P. Sun, RSC Adv., 8, 35062 (2018); https://doi.org/10.1039/C8RA04079F.
- D. Li, S. He, Y. Deng, G. Ding, H. Ni and Y. Cao, Bull. Environ. Contam. Toxicol., 93, 47 (2014); https://doi.org/10.1007/s00128-014-1257-y
- G.D. Wang, Y.Z. Li, W.J. Shi, B. Zhang, L. Hou and Y.Y. Wang, Sens. Actuators B Chem., 331, 129377 (2021); https://doi.org/10.1016/j.snb.2020.129377
- X. Zhang, R. Yu, D. Wang, W. Li and Y. Zhang, Front. Chem., 10, 918941 (2022); https://doi.org/10.3389/fchem.2022.918941
- J. Zhang, B. An, Z. Li, Y. Cao, Y. Dai, W. Wang, L. Zeng, W. Lin and C. Wang, J. Am. Chem. Soc., 143, 8829 (2021); https://doi.org/10.1021/jacs.1c03283
- S. Momin, T. Mahmood, A. Ullah, A. Naeem and A. Khan, Arab. J. Sci. Eng., 49, 9269 (2024); https://doi.org/10.1007/s13369-023-08571-5
- D.T. Sawyer and P.J. Paulsen, J. Am. Chem. Soc., 81, 816 (1959); https://doi.org/10.1021/ja01513a017
- M.S. Mostafa, A.A. Bakr, Gh. Eshaq and M.M. Kamel, Desalin. Water Treat., 56, 239 (2015); https://doi.org/10.1080/19443994.2014.934725
- J. Qin, B. Ma, X.F. Liu, H.L. Lu, X.Y. Dong, S.Q. Zang and H. Hou, J. Mater. Chem. A Mater. Energy Sustain., 3, 12690 (2015); https://doi.org/10.1039/C5TA00322A
- Y. Ma, X. Yang, D. Shi, M. Niu and D. Schipper, Inorg. Chem., 59, 16809 (2020); https://doi.org/10.1021/acs.inorgchem.0c02567
References
M. Almasi, N. Kiraly, V. Zelenak, M. Vilkova and S. Bourrelly, RSC Adv., 11, 20137 (2021); https://doi.org/10.1039/D1RA02938J
T.D. Bennett and A.K. Cheetham, Acc. Chem. Res., 47, 1555 (2014); https://doi.org/10.1021/ar5000314
C. Orellana-Tavra, E.F. Baxter, T. Tian, T.D. Bennett, N.K.H. Slater, A.K. Cheetham and D. Fairen-Jimenez, Chem. Commun., 51, 13878 (2015); https://doi.org/10.1039/C5CC05237H
T.D. Bennett, P.J. Saines, D.A. Keen, J.C. Tan and A.K. Cheetham, Chem. Eur. J., 19, 7049 (2013); https://doi.org/10.1002/chem.201300216
F. Yang, W. Li and B. Tang, J. Alloys Compd., 733, 8 (2018); https://doi.org/10.1016/j.jallcom.2017.10.129
X. Zhang, H. Li, X. Lv, J. Xu, Y. Wang, C. He, N. Liu, Y. Yang and Y. Wang, Chem. Eur. J., 24, 8822 (2018); https://doi.org/10.1002/chem.201800773
Y. Jiao, J. Pei, D. Chen, C. Yan, Y. Hu, Q. Zhang and G. Chen, J. Mater. Chem. A Mater. Energy Sustain., 5, 1094 (2017); https://doi.org/10.1039/C6TA09805C
S. Mottola, A. Mancuso, O. Sacco, V. Vaiano and I. De Marco, Catalysts, 13, 1173 (2023); https://doi.org/10.3390/catal13081173
M. Farré, L. Kantiani, M. Petrovic, S. Pérez and D. Barceló, J. Chromatogr. A, 1259, 86 (2012); https://doi.org/10.1016/j.chroma.2012.07.024
M. González-Pleiter, S. Gonzalo, I. Rodea-Palomares, F. Leganés, R. Rosal, K. Boltes, E. Marco and F. Fernández-Piñas, Water Res., 47, 2050 (2013); https://doi.org/10.1016/j.watres.2013.01.020
R. Meffe and I. de Bustamante, Sci. Total Environ., 481, 280 (2014); https://doi.org/10.1016/j.scitotenv.2014.02.053
P. Karungamye, A. Rugaika, K. Mtei and R. Machunda, J. Xenobiot., 12, 223 (2022); https://doi.org/10.3390/jox12030017
T. Kokulnathan and S.M. Chen, ACS Appl. Mater. Interfaces, 11, 7893 (2019); https://doi.org/10.1021/acsami.8b09204
Y. Zhang, L. Zhao, Y. Yang and P. Sun, RSC Adv., 8, 35062 (2018); https://doi.org/10.1039/C8RA04079F.
D. Li, S. He, Y. Deng, G. Ding, H. Ni and Y. Cao, Bull. Environ. Contam. Toxicol., 93, 47 (2014); https://doi.org/10.1007/s00128-014-1257-y
G.D. Wang, Y.Z. Li, W.J. Shi, B. Zhang, L. Hou and Y.Y. Wang, Sens. Actuators B Chem., 331, 129377 (2021); https://doi.org/10.1016/j.snb.2020.129377
X. Zhang, R. Yu, D. Wang, W. Li and Y. Zhang, Front. Chem., 10, 918941 (2022); https://doi.org/10.3389/fchem.2022.918941
J. Zhang, B. An, Z. Li, Y. Cao, Y. Dai, W. Wang, L. Zeng, W. Lin and C. Wang, J. Am. Chem. Soc., 143, 8829 (2021); https://doi.org/10.1021/jacs.1c03283
S. Momin, T. Mahmood, A. Ullah, A. Naeem and A. Khan, Arab. J. Sci. Eng., 49, 9269 (2024); https://doi.org/10.1007/s13369-023-08571-5
D.T. Sawyer and P.J. Paulsen, J. Am. Chem. Soc., 81, 816 (1959); https://doi.org/10.1021/ja01513a017
M.S. Mostafa, A.A. Bakr, Gh. Eshaq and M.M. Kamel, Desalin. Water Treat., 56, 239 (2015); https://doi.org/10.1080/19443994.2014.934725
J. Qin, B. Ma, X.F. Liu, H.L. Lu, X.Y. Dong, S.Q. Zang and H. Hou, J. Mater. Chem. A Mater. Energy Sustain., 3, 12690 (2015); https://doi.org/10.1039/C5TA00322A
Y. Ma, X. Yang, D. Shi, M. Niu and D. Schipper, Inorg. Chem., 59, 16809 (2020); https://doi.org/10.1021/acs.inorgchem.0c02567