Copyright (c) 2024 HELEN MERINA ALBERT, T Rajani, D Neelima Patnaik, M.V Someswararao, P Vimala, Santosh Kumar Nathsharma , Nellore Manoj Kumar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural, Optical and Hardness Features of Copper Sulphate Crystallites for Optical Applications
Corresponding Author(s) : Helen Merina Albert
Asian Journal of Chemistry,
Vol. 36 No. 12 (2024): Vol 36 Issue 12, 2024
Abstract
In this investigation, copper sulphate crystals (CuSO4) were produced by a slow evaporation process. Powder-Xay diffraction (PXRD), Fourier transform infrared (FTIR) spectroscopy, UV-visible spectroscopy (UV-vis), second harmonic generation (SHG) and microhardness analyses were used to describe the structural aspects, optical parameters and hardness features of the derived crystals. The XRD measurements show that the CuSO4 crystallized into a triclinic structure and the FTIR method was applied to assess the atomic vibrations in the CuSO4 sample. The UV-Vis measurements demonstrated high transparency of CuSO4 in the near-UV and visible spectra. The optical attributes, including refractive index, extinction coefficient, dielectric constants and optical and electrical conductivities of CuSO4 were determined. The SHG ability of the powdered sample was explored by the Kurtz and Perry method and found to be 1.10 times that of the KDP. The mechanical characteristics of the CuSO4 samples were demonstrated by the Vickers microhardness study. Excellent optical attributes, combined with suitable SHG and mechanical characteristics make the CuSO4 crystals suitable for optoelectronic applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.M. Albert, T. Jemima and C.A. Gonsago, J. Fluoresc., 34, 1057 (2024); https://doi.org/10.1007/s10895-023-03335-8
- V.V. Atuchin, B.G. Bazarov, T.A. Gavrilova, V.G. Grossman, M.S. Molokeev and Z.G. Bazarova, J. Alloys Compd., 515, 119 (2012); https://doi.org/10.1016/j.jallcom.2011.11.115
- Z. Yan, J. Fan, S. Pan and M. Zhang, Chem. Soc. Rev., 53, 6568 (2024); https://doi.org/10.1039/D3CS01136D
- H.M. Albert, S.S. Saarwin and C.A. Gonsago, J. Mater. Sci. Mater. Electron., 34, 1407 (2023); https://doi.org/10.1007/s10854-023-10840-w
- S.M. Azhar, M. Anis, G. Rabbani, M.D. Shirsat, M.I. Baig, S.S. Hussaini, S. AlFaify and M.A. Khan, Optik, 185, 1247 (2019); https://doi.org/10.1016/j.ijleo.2019.03.041
- M.I. Baig, M. Anis, H. Algarni, M.D. Shirsat and S.S. Hussaini, Zhongguo Wuli Xuekan, 63, 70 (2020); https://doi.org/10.1016/j.cjph.2019.10.015
- I.Sh. Steinberg, A.V. Kirpichnikov and V.V. Atuchin, Opt. Mater., 78, 253 (2018); https://doi.org/10.1016/j.optmat.2017.11.025
- S. Parola, B. Julián-López, L.D. Carlos and C. Sanchez, Adv. Funct. Mater., 26, 6506 (2016); https://doi.org/10.1002/adfm.201602730
- N. Preetha, S.E. Muthu and J. Thirupathy, J. Mater. Sci. Mater. Electron., 34, 932 (2023); https://doi.org/10.1007/s10854-023-10358-1
- M. Mallik, S. Monia, M. Gupta, A. Ghosh, M.P. Toppo and H. Roy, J. Alloys Compd., 829, 154623 (2020); https://doi.org/10.1016/j.jallcom.2020.154623
- V.L. Manomenova, M.N. Stepnova, V.V. Grebenev, E.B. Rudneva and A.E. Voloshin, Crystallogr. Rep., 58, 513 (2013); https://doi.org/10.1134/S1063774513030152
- F.L. Justel, D.M. Camacho, M.E. Taboada and K.J. Roberts, J. Cryst. Growth, 525, 125204 (2019); https://doi.org/10.1016/j.jcrysgro.2019.125204
- G.E. Bacon and D.H. Titterton, Z. Kristallogr., 141, 330 (1975); https://doi.org/10.1524/zkri.1975.141.5-6.330
- H. Merina Albert, T. Lohitha, K. Alagarsamy, C.A. Gonsago and V. Vishwakarma, Mater. Today Proc., 47, 1030 (2021); https://doi.org/10.1016/j.matpr.2021.06.124
- R. Sangeetha, V. Charles Vincent, G. Bakiyaraj, K. Kirubavathi and K. Selvaraju, Res. Opt, 14, 100607 (2024); https://doi.org/10.1016/j.rio.2024.100607
- K. Kumar, V.C. Vincent, G. Bakiyaraj, K. Kirubavathi and K. Selvaraju, Optik, 226, 165738 (2021); https://doi.org/10.1016/j.ijleo.2020.165738
- S. Kulshrestha and A.K. Shrivastava, AIP Conf. Proc., 2220, 050010 (2020); https://doi.org/10.1063/5.0002152
- T. Murugan, K.S. Murugesan and B.M. Boaz, Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci., 96, 3797 (2022); https://doi.org/10.1007/s12648-022-02335-x
- A.S. Hassanien and I. Sharma, Physica B, 622, 413330 (2021); https://doi.org/10.1016/j.physb.2021.413330
- S. Kurtz and T. Perry, J. Appl. Phys., 39, 3798 (1968); https://doi.org/10.1063/1.1656857
- T.M. Hamdy, BMC Oral Health, 24, 487 (2024); https://doi.org/10.1186/s12903-024-04261-2
- H.M. Albert, G. Durgadevi, D. Kanimozhi and C.A. Gonsago, Appl. Phys., A Mater. Sci. Process., 130, 543 (2024); https://doi.org/10.1007/s00339-024-07707-0
- R.A. Jothi, R.U. Mullai, S. Gopinath, S. Vetrivel and E. Vinoth, J. Mater. Sci. Mater. Electron., 31, 791 (2020); https://doi.org/10.1007/s10854-019-02587-0
References
H.M. Albert, T. Jemima and C.A. Gonsago, J. Fluoresc., 34, 1057 (2024); https://doi.org/10.1007/s10895-023-03335-8
V.V. Atuchin, B.G. Bazarov, T.A. Gavrilova, V.G. Grossman, M.S. Molokeev and Z.G. Bazarova, J. Alloys Compd., 515, 119 (2012); https://doi.org/10.1016/j.jallcom.2011.11.115
Z. Yan, J. Fan, S. Pan and M. Zhang, Chem. Soc. Rev., 53, 6568 (2024); https://doi.org/10.1039/D3CS01136D
H.M. Albert, S.S. Saarwin and C.A. Gonsago, J. Mater. Sci. Mater. Electron., 34, 1407 (2023); https://doi.org/10.1007/s10854-023-10840-w
S.M. Azhar, M. Anis, G. Rabbani, M.D. Shirsat, M.I. Baig, S.S. Hussaini, S. AlFaify and M.A. Khan, Optik, 185, 1247 (2019); https://doi.org/10.1016/j.ijleo.2019.03.041
M.I. Baig, M. Anis, H. Algarni, M.D. Shirsat and S.S. Hussaini, Zhongguo Wuli Xuekan, 63, 70 (2020); https://doi.org/10.1016/j.cjph.2019.10.015
I.Sh. Steinberg, A.V. Kirpichnikov and V.V. Atuchin, Opt. Mater., 78, 253 (2018); https://doi.org/10.1016/j.optmat.2017.11.025
S. Parola, B. Julián-López, L.D. Carlos and C. Sanchez, Adv. Funct. Mater., 26, 6506 (2016); https://doi.org/10.1002/adfm.201602730
N. Preetha, S.E. Muthu and J. Thirupathy, J. Mater. Sci. Mater. Electron., 34, 932 (2023); https://doi.org/10.1007/s10854-023-10358-1
M. Mallik, S. Monia, M. Gupta, A. Ghosh, M.P. Toppo and H. Roy, J. Alloys Compd., 829, 154623 (2020); https://doi.org/10.1016/j.jallcom.2020.154623
V.L. Manomenova, M.N. Stepnova, V.V. Grebenev, E.B. Rudneva and A.E. Voloshin, Crystallogr. Rep., 58, 513 (2013); https://doi.org/10.1134/S1063774513030152
F.L. Justel, D.M. Camacho, M.E. Taboada and K.J. Roberts, J. Cryst. Growth, 525, 125204 (2019); https://doi.org/10.1016/j.jcrysgro.2019.125204
G.E. Bacon and D.H. Titterton, Z. Kristallogr., 141, 330 (1975); https://doi.org/10.1524/zkri.1975.141.5-6.330
H. Merina Albert, T. Lohitha, K. Alagarsamy, C.A. Gonsago and V. Vishwakarma, Mater. Today Proc., 47, 1030 (2021); https://doi.org/10.1016/j.matpr.2021.06.124
R. Sangeetha, V. Charles Vincent, G. Bakiyaraj, K. Kirubavathi and K. Selvaraju, Res. Opt, 14, 100607 (2024); https://doi.org/10.1016/j.rio.2024.100607
K. Kumar, V.C. Vincent, G. Bakiyaraj, K. Kirubavathi and K. Selvaraju, Optik, 226, 165738 (2021); https://doi.org/10.1016/j.ijleo.2020.165738
S. Kulshrestha and A.K. Shrivastava, AIP Conf. Proc., 2220, 050010 (2020); https://doi.org/10.1063/5.0002152
T. Murugan, K.S. Murugesan and B.M. Boaz, Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci., 96, 3797 (2022); https://doi.org/10.1007/s12648-022-02335-x
A.S. Hassanien and I. Sharma, Physica B, 622, 413330 (2021); https://doi.org/10.1016/j.physb.2021.413330
S. Kurtz and T. Perry, J. Appl. Phys., 39, 3798 (1968); https://doi.org/10.1063/1.1656857
T.M. Hamdy, BMC Oral Health, 24, 487 (2024); https://doi.org/10.1186/s12903-024-04261-2
H.M. Albert, G. Durgadevi, D. Kanimozhi and C.A. Gonsago, Appl. Phys., A Mater. Sci. Process., 130, 543 (2024); https://doi.org/10.1007/s00339-024-07707-0
R.A. Jothi, R.U. Mullai, S. Gopinath, S. Vetrivel and E. Vinoth, J. Mater. Sci. Mater. Electron., 31, 791 (2020); https://doi.org/10.1007/s10854-019-02587-0