Copyright (c) 2024 BISWABARA ROY BISWABARA
This work is licensed under a Creative Commons Attribution 4.0 International License.
PPARγ and COX1 Inhibition of Linoleic Acid as Potential Bioactive Molecule in Aqueous Extract of Tinospora cordifolia (Wild.): A in silico based Approach
Corresponding Author(s) : Biswabara Roy
Asian Journal of Chemistry,
Vol. 36 No. 12 (2024): Vol 36 Issue 12, 2024
Abstract
In this work, the ethyl acetate extract of Tinospora cardifolia was analyzed using GC-MS and phytochemical analysis. The FTIR analysis and UV spectroscopy were used to further validate the structures of the isolated compounds. For the selected compounds, the computational methods were used to conduct an in silico analysis on their molecular, physico-chemical and druglikeliness properties. Moreover, the pharmacokinetic profile and additional toxicity potential were ascertained. Swiss ADME tools and OSIRIS data warrior were used in the investigation. The docking experiment was used to examine the anti-inflammatory and antidiabetic characteristics. The α-glucosidase, peroxisome proliferator-activated receptor, glucose transporter-1 and cyclooxygenases 1 and 2 were targeted for inhibition. Approximately 23 chemicals were found during GC-MS analysis. Each of the compounds have shown the pharmacokinetic potential and moderate to good drug likeliness. The compounds bioactivity score against enzyme receptors was high. The least harmful profile of PGP and CYP inhibitory actions was indicated by the ADMET prediction. Linoleic acid (molecule-12) has a strong binding affinity for PPARγ and COX1 targeted proteins under inquiry as demonstrated by the docking studies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Anjum, U. Bagale, A. Kadi, I. Potoroko, S.H. Sonawane and A. Anjum, Molecules, 28, 7073 (2023); https://doi.org/10.3390/molecules28207073
- S. Saha and S. Ghosh, Ancient Sci. Life, 31, 151 (2012); https://doi.org/10.4103/0257-7941.107344
- N.N. Rege, U.M. Thatte and S.A. Dahanukar, Phytother. Res., 13, 275 (1999); https://doi.org/10.1002/(SICI)1099-1573(199906)13:4<275::AID-PTR510>3.0.CO;2-S
- A.K. Upadhyay, K. Kumar, A. Kumar and H.S. Mishra, Int. J. Ayurveda Res., 1, 112 (2010); https://doi.org/10.4103/0974-7788.64405
- A. Kumar, A. Voet and K. Zhang, Curr. Med. Chem., 19, 5128 (2012); https://doi.org/10.2174/092986712803530467
- B.J. McConkey, V. Sobolev and M. Edelman, Curr. Sci., 83, 845 (2002).
- G.R. Marshall, C.D. Barry, H.E. Bosshard, R.A. Dammkoehler and D.A. Dunn, Computer-Assisted Drug Design, ACS Symposium Series 112, 205 (2019); https://doi.org/10.1021/bk-1979-0112.ch009
- X.Y. Meng, H.X. Zhang and M. Mezei and M. Cui, Curr. Computer-Aided Drug Design, 7, 146 (2011); https://doi.org/10.2174/157340911795677602
- S. Sen, B. Ravindar, S. Jala and L. Dharabonia, Int. J. Pharm. Sci. Res., 13, 3163 (2022); https://doi.org/10.13040/IJPSR.0975-8232.13(8).3163-73
- P.A. Bafna and R. Balaraman, Phytomedicine, 12, 264 (2005); https://doi.org/10.1016/j.phymed.2003.12.009
- A. Nicholls, G.B. McGaughey, R.P. Sheridan, A.C. Good, G. Warren, M. Mathieu, S.W. Muchmore, S.P. Brown, J.A. Grant, J.A. Haigh, N. Nevins, A.N. Jain and B. Kelley, J. Med. Chem., 53, 3862 (2010); https://doi.org/10.1021/jm900818s
- R. Rohs, I. Bloch, H. Sklenar and Z. Shakked, Nucleic Acids Res., 33, 7048 (2005); https://doi.org/10.1093/nar/gki1008
- O. Méndez-Lucio and J.L. Medina-Franco, Drug Discov. Today, 22, 120 (2017); https://doi.org/10.1016/j.drudis.2016.08.009
- L.Z. Benet, C.M. Hosey, O. Ursu and T.I. Oprea, Adv. Drug Deliv. Rev., 101, 89 (2016); https://doi.org/10.1016/j.addr.2016.05.007
- S. Prasanna and R.J. Doerksen, Curr. Med. Chem., 16, 21 (2009); https://doi.org/10.2174/092986709787002817
- D. Ji, M. Xua, C.C. Udenigwe and D. Agyeia, Curr. Res. Food Sci., 3, 41 (2020); https://doi.org/10.1016/j.crfs.2020.03.001
- A. Husain, A. Ahmad, S.A. Khan, M. Asif, R. Bhutani and F.A. Al-Abbasi, Saudi Pharm. J., 24, 104 (2016); https://doi.org/10.1016/j.jsps.2015.02.008
- W.S. Nimmo, Clin. Pharmacokinet, 1, 189 (1976); https://doi.org/10.2165/00003088-197601030-00002
- M.D. Wessel, P.C. Jurs, J.W. Tolan and S.M. Muskal, J. Chem. Inf. Comput. Sci., 38, 726 (1998); https://doi.org/10.1021/ci980029a
- W.M. Pardridge, J Cereb Blood Flow Metab., 32, 1959 (2012); https://doi.org/10.1038/jcbfm.2012.126
- Y. Tanigawara, Ther Drug Monit., 22, 137 (2000); https://doi.org/10.1097/00007691-200002000-00029
- J.H. Lin and A.Y. Lu, Clin Pharmacokinet, 35, 361 (1998); https://doi.org/10.2165/00003088-199835050-00003
- R.O. Potts and R.H. Guy, Pharm Res., 9, 663 (1992); https://doi.org/10.1023/a:1015810312465
References
V. Anjum, U. Bagale, A. Kadi, I. Potoroko, S.H. Sonawane and A. Anjum, Molecules, 28, 7073 (2023); https://doi.org/10.3390/molecules28207073
S. Saha and S. Ghosh, Ancient Sci. Life, 31, 151 (2012); https://doi.org/10.4103/0257-7941.107344
N.N. Rege, U.M. Thatte and S.A. Dahanukar, Phytother. Res., 13, 275 (1999); https://doi.org/10.1002/(SICI)1099-1573(199906)13:4<275::AID-PTR510>3.0.CO;2-S
A.K. Upadhyay, K. Kumar, A. Kumar and H.S. Mishra, Int. J. Ayurveda Res., 1, 112 (2010); https://doi.org/10.4103/0974-7788.64405
A. Kumar, A. Voet and K. Zhang, Curr. Med. Chem., 19, 5128 (2012); https://doi.org/10.2174/092986712803530467
B.J. McConkey, V. Sobolev and M. Edelman, Curr. Sci., 83, 845 (2002).
G.R. Marshall, C.D. Barry, H.E. Bosshard, R.A. Dammkoehler and D.A. Dunn, Computer-Assisted Drug Design, ACS Symposium Series 112, 205 (2019); https://doi.org/10.1021/bk-1979-0112.ch009
X.Y. Meng, H.X. Zhang and M. Mezei and M. Cui, Curr. Computer-Aided Drug Design, 7, 146 (2011); https://doi.org/10.2174/157340911795677602
S. Sen, B. Ravindar, S. Jala and L. Dharabonia, Int. J. Pharm. Sci. Res., 13, 3163 (2022); https://doi.org/10.13040/IJPSR.0975-8232.13(8).3163-73
P.A. Bafna and R. Balaraman, Phytomedicine, 12, 264 (2005); https://doi.org/10.1016/j.phymed.2003.12.009
A. Nicholls, G.B. McGaughey, R.P. Sheridan, A.C. Good, G. Warren, M. Mathieu, S.W. Muchmore, S.P. Brown, J.A. Grant, J.A. Haigh, N. Nevins, A.N. Jain and B. Kelley, J. Med. Chem., 53, 3862 (2010); https://doi.org/10.1021/jm900818s
R. Rohs, I. Bloch, H. Sklenar and Z. Shakked, Nucleic Acids Res., 33, 7048 (2005); https://doi.org/10.1093/nar/gki1008
O. Méndez-Lucio and J.L. Medina-Franco, Drug Discov. Today, 22, 120 (2017); https://doi.org/10.1016/j.drudis.2016.08.009
L.Z. Benet, C.M. Hosey, O. Ursu and T.I. Oprea, Adv. Drug Deliv. Rev., 101, 89 (2016); https://doi.org/10.1016/j.addr.2016.05.007
S. Prasanna and R.J. Doerksen, Curr. Med. Chem., 16, 21 (2009); https://doi.org/10.2174/092986709787002817
D. Ji, M. Xua, C.C. Udenigwe and D. Agyeia, Curr. Res. Food Sci., 3, 41 (2020); https://doi.org/10.1016/j.crfs.2020.03.001
A. Husain, A. Ahmad, S.A. Khan, M. Asif, R. Bhutani and F.A. Al-Abbasi, Saudi Pharm. J., 24, 104 (2016); https://doi.org/10.1016/j.jsps.2015.02.008
W.S. Nimmo, Clin. Pharmacokinet, 1, 189 (1976); https://doi.org/10.2165/00003088-197601030-00002
M.D. Wessel, P.C. Jurs, J.W. Tolan and S.M. Muskal, J. Chem. Inf. Comput. Sci., 38, 726 (1998); https://doi.org/10.1021/ci980029a
W.M. Pardridge, J Cereb Blood Flow Metab., 32, 1959 (2012); https://doi.org/10.1038/jcbfm.2012.126
Y. Tanigawara, Ther Drug Monit., 22, 137 (2000); https://doi.org/10.1097/00007691-200002000-00029
J.H. Lin and A.Y. Lu, Clin Pharmacokinet, 35, 361 (1998); https://doi.org/10.2165/00003088-199835050-00003
R.O. Potts and R.H. Guy, Pharm Res., 9, 663 (1992); https://doi.org/10.1023/a:1015810312465