Copyright (c) 2024 Siti Zafirah Zulkifli, Ahmad Amzar Abdul Aziz, Aimi Suhaily Saaidin, Nuraisyikin Hamzah, Noor Hidayah Pungot
This work is licensed under a Creative Commons Attribution 4.0 International License.
Molecular Docking and ADME Profiles of Hyrtiosulawesine Derivatives Targeting pfLDH: Exploring Potential as Antimalarial Agents
Corresponding Author(s) : Noor Hidayah Pungot
Asian Journal of Chemistry,
Vol. 36 No. 10 (2024): Vol 36 Issue 10, 2024
Abstract
The relentless rise in Plasmodium falciparum’s resistance to existing antimalarial drugs has sparked an urgent quest for novel therapeutic agents. For centuries, natural resources have been the bedrock of medicinal remedies, with β-carboline emerging as a beacon of hope in antimalarial research. In this study, we delve into the potential of hyrtiosulawesine derivatives as revolutionary antimalarial compounds, utilizing hyrtiosulawesine as the crucial scaffold. Employing a sophisticated amalgamation of molecular docking and ADME (absorption, distribution, metabolism and excretion) profiling, we meticulously screened an extensive library of hyrtiosulawesine’s derivatives against P. falciparum. Based on advanced computational techniques, the binding affinities and interaction profiles were assessed and culminating in the selection of the most promising candidates based on their exceptional binding interactions. Moreover, the comprehensive ADME analyses were performed to assess the pharmacokinetic properties of these derivatives, ensuring their suitability as drug candidates. The results showed that most of the analogues exhibited strong binding affinities (-7.2 to -9.8 kcal/mol) to the Plasmodium falciparum lactate dehydrogenase (pfLDH) protein, surpassing that of hyrtiosulawesine itself. Among these, compounds 2t and 1w demonstrated the strongest binding, likely due to hydrogen bonding with Arg171 and Asn197. ADME profiling revealed that all hyrtiosulawesine derivatives displayed favourable drug-likeness properties and adhered to the Lipinski Rule of 5 (Ro5) indicating their potential efficacy as antimalarial agents. This investigation provides a foundation for further in vitro and in vivo investigations paving the way for the development of effective treatments against malaria.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.J. Oladipo, Y.A. Tajudeen, I.O. Oladunjoye, S.I. Yusuff, R.O. Yusuf, E.M. Oluwaseyi, M.O. Abdul Basit, Y.A. Adebisi and M.S. El-Sherbini, Ann. Med. Surg., 81, 104366 (2022); https://doi.org/10.1016/j.amsu.2022.104366
- C.H. Sibley, Mol. Biochem. Parasitol., 195, 107 (2014); https://doi.org/10.1016/j.molbiopara.2014.06.001
- E.G. Tse, M. Korsik and M.H. Todd, Malar. J., 18, 93 (2019); https://doi.org/10.1186/s12936-019-2724-z
- D.A. Fidock, T. Nomura, A.K. Talley, R.A. Cooper, S.M. Dzekunov, M.T. Ferdig, L.M.B. Ursos, A.B.S. Sidhu, B. Naudé, K.W. Deitsch, X. Su, J.C. Wootton, P.D. Roepe and T.E. Wellems, Mol. Cell, 6, 861 (2000); https://doi.org/10.1016/S1097-2765(05)00077-8
- A. Choudhary, L.M. Naughton, I. Montánchez, A.D.W. Dobson and D.K. Rai, Mar. Drugs, 15, 272 (2017); https://doi.org/10.3390/md15090272
- H.N. ElSohly, E.M. Croom Jr., F.S. El-Feraly and M.M. El-Sherei, J. Nat. Prod., 53, 1560 (1990); https://doi.org/10.1021/np50072a026
- World Health Organization (WHO), Artemisinin and Artemisinin-based Combination Therapy Resistance: Status Report No. WHO/HTM/GMP/2016.11 (2016).
- A. Kamboj, B. Sihag, D.S. Brar, A. Kaur and D.B. Salunke, Eur. J. Med. Chem., 221, 113536 (2021); https://doi.org/10.1016/j.ejmech.2021.113536
- P. Ashok, S. Ganguly and S. Murugesan, Drug Discov. Today, 19, 1781 (2014); https://doi.org/10.1016/j.drudis.2014.06.010
- R. Sakai, T. Higa, C.W. Jefford and G. Bernardinelli, J. Am. Chem. Soc., 108, 6404 (1986); https://doi.org/10.1021/ja00280a055
- S.Z. Zulkifli, N.H. Pungot, A.S. Saaidin, N.A. Jani and M.F. Mohammat, Nat. Prod. Res., 1 (2023); https://doi.org/10.1080/14786419.2023.2261141
- P.C. Agu, C.A. Afiukwa, O.U. Orji, E.M. Ezeh, I.H. Ofoke, C.O. Ogbu, E.I. Ugwuja and P.M. Aja, Sci. Rep., 13, 13398 (2023); https://doi.org/10.1038/s41598-023-40160-2
- G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
- L. Schrödinger and W. DeLano, PyMOL (2020); http://www.pymol.org/pymol
- P. Sucharitha, K.R. Reddy, S.V. Satyanarayana, and T. Garg, Eds.: A. Parihar, R. Khan, A. Kumar, A.K. Kaushik and H. Gohel, Absorption, Distribution, Metabolism, Excretion and Toxicity Assessment of Drugs using Computational Tools, In: Computational approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection, Academic Press, Chap. 5, pp. 335-355 (2022).
- E. López-Camacho, M.J. García-Godoy, J. García-Nieto, A.J. Nebro, and J.F. Aldana-Montes, Eds.: Botón-Fernández, M., Martín-Vide, C., Santander-Jiménez, S., Vega-Rodríguez, M.A., A New Multi-objective Approach for Molecular Docking Based on RMSD and Binding Energy. In: Algorithms for Computational Biology. AlCoB 2016. Lecture Notes in Computer Science, Vol. 9702, pp. 65-77 (2016).
- E. Anklam, M.I. Bahl, R. Ball, R.D. Beger, J. Cohen, S. Fitzpatrick, P. Girard, B. Halamoda-Kenzaoui, D. Hinton, A. Hirose, A. Hoeveler, M. Honma, M. Hugas, S. Ishida, G.E.N. Kass, H. Kojima, I. Krefting, S. Liachenko, Y. Liu, S. Masters, U. Marx, T. McCarthy, T. Mercer, A. Patri, C. Pelaez, M. Pirmohamed, S. Platz, A.J.S. Ribeiro, J.V Rodricks, I. Rusyn, R.M. Salek, R. Schoonjans, P. Silva, C.N. Svendsen, S. Sumner, K. Sung, D. Tagle, L. Tong, W. Tong, J. van den Eijnden-van-Raaij, N. Vary, T. Wang, J. Waterton, M. Wang, H. Wen, D. Wishart, Y. Yuan and W. Slikker Jr., Exp. Biol. Med., 247, 1 (2002); https://doi.org/10.1177/15353702211052280
- J. Gan, B. Bolon, T.V. Vleet and C. Wood, eds.: W.M. Haschek, C.G. Rousseaux and M.A. Wallig; In Haschek and Rousseaux’s Handbook of Toxicologic Pathology, pp. 925-966 (2022).
- A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
- C.M. Nisha, A. Kumar, P. Nair, N. Gupta, C. Silakari, T. Tripathi and A. Kumar, Bioinform. Adv., 2016, 9258578 (2016); https://doi.org/10.1155/2016/9258578
References
H.J. Oladipo, Y.A. Tajudeen, I.O. Oladunjoye, S.I. Yusuff, R.O. Yusuf, E.M. Oluwaseyi, M.O. Abdul Basit, Y.A. Adebisi and M.S. El-Sherbini, Ann. Med. Surg., 81, 104366 (2022); https://doi.org/10.1016/j.amsu.2022.104366
C.H. Sibley, Mol. Biochem. Parasitol., 195, 107 (2014); https://doi.org/10.1016/j.molbiopara.2014.06.001
E.G. Tse, M. Korsik and M.H. Todd, Malar. J., 18, 93 (2019); https://doi.org/10.1186/s12936-019-2724-z
D.A. Fidock, T. Nomura, A.K. Talley, R.A. Cooper, S.M. Dzekunov, M.T. Ferdig, L.M.B. Ursos, A.B.S. Sidhu, B. Naudé, K.W. Deitsch, X. Su, J.C. Wootton, P.D. Roepe and T.E. Wellems, Mol. Cell, 6, 861 (2000); https://doi.org/10.1016/S1097-2765(05)00077-8
A. Choudhary, L.M. Naughton, I. Montánchez, A.D.W. Dobson and D.K. Rai, Mar. Drugs, 15, 272 (2017); https://doi.org/10.3390/md15090272
H.N. ElSohly, E.M. Croom Jr., F.S. El-Feraly and M.M. El-Sherei, J. Nat. Prod., 53, 1560 (1990); https://doi.org/10.1021/np50072a026
World Health Organization (WHO), Artemisinin and Artemisinin-based Combination Therapy Resistance: Status Report No. WHO/HTM/GMP/2016.11 (2016).
A. Kamboj, B. Sihag, D.S. Brar, A. Kaur and D.B. Salunke, Eur. J. Med. Chem., 221, 113536 (2021); https://doi.org/10.1016/j.ejmech.2021.113536
P. Ashok, S. Ganguly and S. Murugesan, Drug Discov. Today, 19, 1781 (2014); https://doi.org/10.1016/j.drudis.2014.06.010
R. Sakai, T. Higa, C.W. Jefford and G. Bernardinelli, J. Am. Chem. Soc., 108, 6404 (1986); https://doi.org/10.1021/ja00280a055
S.Z. Zulkifli, N.H. Pungot, A.S. Saaidin, N.A. Jani and M.F. Mohammat, Nat. Prod. Res., 1 (2023); https://doi.org/10.1080/14786419.2023.2261141
P.C. Agu, C.A. Afiukwa, O.U. Orji, E.M. Ezeh, I.H. Ofoke, C.O. Ogbu, E.I. Ugwuja and P.M. Aja, Sci. Rep., 13, 13398 (2023); https://doi.org/10.1038/s41598-023-40160-2
G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
L. Schrödinger and W. DeLano, PyMOL (2020); http://www.pymol.org/pymol
P. Sucharitha, K.R. Reddy, S.V. Satyanarayana, and T. Garg, Eds.: A. Parihar, R. Khan, A. Kumar, A.K. Kaushik and H. Gohel, Absorption, Distribution, Metabolism, Excretion and Toxicity Assessment of Drugs using Computational Tools, In: Computational approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection, Academic Press, Chap. 5, pp. 335-355 (2022).
E. López-Camacho, M.J. García-Godoy, J. García-Nieto, A.J. Nebro, and J.F. Aldana-Montes, Eds.: Botón-Fernández, M., Martín-Vide, C., Santander-Jiménez, S., Vega-Rodríguez, M.A., A New Multi-objective Approach for Molecular Docking Based on RMSD and Binding Energy. In: Algorithms for Computational Biology. AlCoB 2016. Lecture Notes in Computer Science, Vol. 9702, pp. 65-77 (2016).
E. Anklam, M.I. Bahl, R. Ball, R.D. Beger, J. Cohen, S. Fitzpatrick, P. Girard, B. Halamoda-Kenzaoui, D. Hinton, A. Hirose, A. Hoeveler, M. Honma, M. Hugas, S. Ishida, G.E.N. Kass, H. Kojima, I. Krefting, S. Liachenko, Y. Liu, S. Masters, U. Marx, T. McCarthy, T. Mercer, A. Patri, C. Pelaez, M. Pirmohamed, S. Platz, A.J.S. Ribeiro, J.V Rodricks, I. Rusyn, R.M. Salek, R. Schoonjans, P. Silva, C.N. Svendsen, S. Sumner, K. Sung, D. Tagle, L. Tong, W. Tong, J. van den Eijnden-van-Raaij, N. Vary, T. Wang, J. Waterton, M. Wang, H. Wen, D. Wishart, Y. Yuan and W. Slikker Jr., Exp. Biol. Med., 247, 1 (2002); https://doi.org/10.1177/15353702211052280
J. Gan, B. Bolon, T.V. Vleet and C. Wood, eds.: W.M. Haschek, C.G. Rousseaux and M.A. Wallig; In Haschek and Rousseaux’s Handbook of Toxicologic Pathology, pp. 925-966 (2022).
A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
C.M. Nisha, A. Kumar, P. Nair, N. Gupta, C. Silakari, T. Tripathi and A. Kumar, Bioinform. Adv., 2016, 9258578 (2016); https://doi.org/10.1155/2016/9258578