Copyright (c) 2024 Jerin James, Nishesh Sharma, Priyvart Choudhary, Amit Semwal, Rohit Sharma, Vinay Diwedi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of CuO Nanoparticles from Kappaphycus alvarezii Derived Carrageenan for the Photocatalytic Degradation of Methylene Blue Dye
Corresponding Author(s) : Rohit Sharma
Asian Journal of Chemistry,
Vol. 36 No. 10 (2024): Vol 36 Issue 10, 2024
Abstract
The present study investigates the synthesis and characterization of copper oxide (CuO) nanoparticles embedded in carrageenan matrices derived from green and brown strains of Kappaphycus alvarezii. The CuO-carrageenan nanoparticles (CuO-CRGg and CuO-CRGb) exhibit distinct absorption peaks at 295 nm and 301 nm, respectively suggesting variations in particle size distribution and crystallinity. Morphological analysis through SEM reveals the agglomerated structures with average particle sizes of 93 nm for CuO-CRGg and 106 nm for CuO-CRGb. FTIR analysis indicates the presence of functional groups including 3,6-anhydrogalactose from carrageenan, whereas the XRD analysis shows the average crystalline sizes of 26 nm and 27 nm for CuO-CRGg and CuO-CRGb, respectively. The energy levels associated with CuO-CRGg and CuO-CRGb nanoparticles are confirmed with a characteric peak at 4.20 and 4.12 eV, respectively suggesting wide bandgap semiconductor properties. The CuO-CRGb nanoparticles demonstrate higher photocatalytic efficiency under UV light (89.76%) compared to visible light (55.21%), with rate constants of 0.035 min–1 and a half-life of 4.04 min. Whereas CuO-CRGg nanoparticles exhibit efficiencies of 86.87% under UV light and 64.38% under visible light, with a rate constant of 0.033 min–1 and a half-life of 4.12 min under UV light and 0.011 min–1 and a half-life of 5.15 min under visible light.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Xiong, A.M. Grant, R. Ma, S. Zhang and V. Tsukruk, Mater. Sci. Eng. Rep., 125, 1 (2018); https://doi.org/10.1016/j.mser.2018.01.002
- M.D. Arif, M.E. Hoque, M.Z. Rahman and M.U. Shafoyat, Mater. Today Commun., 40, 109335 (2024); https://doi.org/10.1016/j.mtcomm.2024.109335
- T.M. Joseph, D.K. Mahapatra, A. Esmaeili, L. Piszczyk, M.S. Hasanin, M. Kattali, J. Haponiuk and S. Thomas, Nanomaterials, 13, 574 (2023); https://doi.org/10.3390/nano13030574
- S.A. Qamar, M. Junaid, A. Riasat, M. Jahangeer, M. Bilal and B.Z. Mu, Stärke, 76, 2200018 (2022); https://doi.org/10.1002/star.202200018
- C.J. Dawes, A.O. Lluisma and G.C. Trono, J. Appl. Phycol., 6, 21 (1994); https://doi.org/10.1007/BF02185899
- M.S. Khan, S. Ranjani and S. Hemalatha, Mater. Chem. Phys., 282, 125985 (2022); https://doi.org/10.1016/j.matchemphys.2022.125985
- Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, N.B.B.A. Khairudin, S.E.B. Mohamad and K.X. Lee, Nanoscale Res. Lett., 11, 276 (2016); https://doi.org/10.1186/s11671-016-1498-2
- Y.P. Yew, K. Shameli, S.E.B. Mohamad, Y. Nagao, S.-Y. Teow, K.X. Lee and E.D. Mohamed Isa, Int. J. Pharm., 572, 118743 (2019); https://doi.org/10.1016/j.ijpharm.2019.118743
- M. Sathish, T. Gobinath, A. Sundaramanickam, K. Saranya, A. Nithin and P. Surya, Inorg. Nano-Metal Chem., 52, 734 (2022); https://doi.org/10.1080/24701556.2021.1952243
- H.N. Jayasimha, K.G. Chandrappa, P.F. Sanaulla and V.G. Dileepkumar, Sens. Int., 5, 100254 (2024); https://doi.org/10.1016/j.sintl.2023.100254
- E. Ye and X.J. Loh, Aust. J. Chem., 66, 997 (2013); https://doi.org/10.1071/CH13168
- M.J. Curri, R. Comparelli, P.D. Cozzoli, G. Mascolo and A. Agostiano, Mater. Sci. Eng. C, 23, 285 (2003); https://doi.org/10.1016/S0928-4931(02)00250-3
- A. Ajmal, I. Majeed, R.N. Malik, H. Idriss and M.A. Nadeem, RSC Adv., 4, 37003 (2014); https://doi.org/10.1039/C4RA06658H
- A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J.M. Herrmann, Appl. Catal. B, 31, 145 (2001); https://doi.org/10.1016/S0926-3373(00)00276-9
- I. Khan, K. Saeed, I. Zekker, B. Zhang, A.H. Hendi, A. Ahmad, S. Ahmad, N. Zada, H. Ahmad, L.A. Shah, T. Shah and I. Khan, Water, 14, 242 (2022); https://doi.org/10.3390/w14020242
- R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari and V. Ravikumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 746 (2014); https://doi.org/10.1016/j.saa.2013.12.020
- C. Chen, Z. Xu, J. Qiu, W. Ye, X. Xu, R. Wang, C. Hu, J. Zhuang, B. Lei, W. Li, X. Zhang, G. Hu and Y. Liu, ACS Appl. Nano Mater., 5, 9140 (2022); https://doi.org/10.1021/acsanm.2c01444
- K. Atacan, B. Topaloglu and M. Özacar, Appl. Catal. A Gen., 564, 33 (2018); https://doi.org/10.1016/j.apcata.2018.07.020
- B. Belache, Y. Khelfaoui, M. Bououdina, T. Souier and W. Cai, J. Lumin., 207, 258 (2019); https://doi.org/10.1016/j.jlumin.2018.11.029
- C.H. Ashok, K.V. Rao and C.S. Chakra, J. Atoms Mol., 4, 803 (2014).
- E. Ayoman and S.G. Hosseini, J. Therm. Anal. Calorim., 123, 1213 (2016); https://doi.org/10.1007/s10973-015-5059-1
- A.A. Oun and J.W. Rhim, Food Hydrocoll., 67, 45 (2017); https://doi.org/10.1016/j.foodhyd.2016.12.040
- S. Jacob, A.B. Nair, J. Shah, S. Gupta, S.H.S. Boddu, N. Sreeharsha, A. Joseph, P. Shinu and M.A. Morsy, Pharmaceutics, 14, 533 (2022); https://doi.org/10.3390/pharmaceutics14030533
- K. Tharani and L.C. Nehru, Rom. J. Biophys., 30, 55 (2020).
- R.M. Amir, F.M. Anjum, M.I. Khan, M.R. Khan, I. Pasha and M. Nadeem, J. Food Sci. Technol., 50, 1018 (2013); https://doi.org/10.1007/s13197-011-0424-y
- N. Hans, S. Gupta, F. Pattnaik, A.K. Patel, S. Naik and A. Malik, Int. J. Biol. Macromol., 250, 126230 (2023); https://doi.org/10.1016/j.ijbiomac.2023.126230.
- G. Sorekine, G. Anduwan, M.N. Waimbo, H. Osora, S. Velusamy, S. Kim, Y.S. Kim and J. Charles, J. Mol. Struct., 1248, 131487 (2022); https://doi.org/10.1016/j.molstruc.2021.131487
- N. Benhadria, M. Hachemaoui, F. Zaoui, A. Mokhtar, S. Boukreris, T. Attar, L. Belarbi and B. Boukoussa, J. Cluster Sci., 33, 249 (2022); https://doi.org/10.1007/s10876-020-01950-0
- M. Kumar, R.R. Das, M. Samal and K. Yun, Mater. Chem. Phys., 218, 272 (2018); https://doi.org/10.1016/j.matchemphys.2018.07.048
- B.A. Aragaw and A. Dagnaw, Ethiopian J. Sci. Technol., 12, 125 (1970); https://doi.org/10.4314/ejst.v12i2.2
- M.J. Ndolomingo and R. Meijboom, Appl. Catal. A Gen., 506, 33 (2015); https://doi.org/10.1016/j.apcata.2015.08.036
- B.A. Aragaw and A. Dagnaw, Ethiop. J. Sci. Technol., 12, 125 (2019); https://doi.org/10.4314/ejst.v12i2.2
- M.P. Rao, S. Anandan, S. Suresh, A.M. Asiri and J.J. Wu, Energy Environment Focus, 4, 250 (2015); https://doi.org/10.1166/eef.2015.1168
References
R. Xiong, A.M. Grant, R. Ma, S. Zhang and V. Tsukruk, Mater. Sci. Eng. Rep., 125, 1 (2018); https://doi.org/10.1016/j.mser.2018.01.002
M.D. Arif, M.E. Hoque, M.Z. Rahman and M.U. Shafoyat, Mater. Today Commun., 40, 109335 (2024); https://doi.org/10.1016/j.mtcomm.2024.109335
T.M. Joseph, D.K. Mahapatra, A. Esmaeili, L. Piszczyk, M.S. Hasanin, M. Kattali, J. Haponiuk and S. Thomas, Nanomaterials, 13, 574 (2023); https://doi.org/10.3390/nano13030574
S.A. Qamar, M. Junaid, A. Riasat, M. Jahangeer, M. Bilal and B.Z. Mu, Stärke, 76, 2200018 (2022); https://doi.org/10.1002/star.202200018
C.J. Dawes, A.O. Lluisma and G.C. Trono, J. Appl. Phycol., 6, 21 (1994); https://doi.org/10.1007/BF02185899
M.S. Khan, S. Ranjani and S. Hemalatha, Mater. Chem. Phys., 282, 125985 (2022); https://doi.org/10.1016/j.matchemphys.2022.125985
Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, N.B.B.A. Khairudin, S.E.B. Mohamad and K.X. Lee, Nanoscale Res. Lett., 11, 276 (2016); https://doi.org/10.1186/s11671-016-1498-2
Y.P. Yew, K. Shameli, S.E.B. Mohamad, Y. Nagao, S.-Y. Teow, K.X. Lee and E.D. Mohamed Isa, Int. J. Pharm., 572, 118743 (2019); https://doi.org/10.1016/j.ijpharm.2019.118743
M. Sathish, T. Gobinath, A. Sundaramanickam, K. Saranya, A. Nithin and P. Surya, Inorg. Nano-Metal Chem., 52, 734 (2022); https://doi.org/10.1080/24701556.2021.1952243
H.N. Jayasimha, K.G. Chandrappa, P.F. Sanaulla and V.G. Dileepkumar, Sens. Int., 5, 100254 (2024); https://doi.org/10.1016/j.sintl.2023.100254
E. Ye and X.J. Loh, Aust. J. Chem., 66, 997 (2013); https://doi.org/10.1071/CH13168
M.J. Curri, R. Comparelli, P.D. Cozzoli, G. Mascolo and A. Agostiano, Mater. Sci. Eng. C, 23, 285 (2003); https://doi.org/10.1016/S0928-4931(02)00250-3
A. Ajmal, I. Majeed, R.N. Malik, H. Idriss and M.A. Nadeem, RSC Adv., 4, 37003 (2014); https://doi.org/10.1039/C4RA06658H
A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J.M. Herrmann, Appl. Catal. B, 31, 145 (2001); https://doi.org/10.1016/S0926-3373(00)00276-9
I. Khan, K. Saeed, I. Zekker, B. Zhang, A.H. Hendi, A. Ahmad, S. Ahmad, N. Zada, H. Ahmad, L.A. Shah, T. Shah and I. Khan, Water, 14, 242 (2022); https://doi.org/10.3390/w14020242
R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari and V. Ravikumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 746 (2014); https://doi.org/10.1016/j.saa.2013.12.020
C. Chen, Z. Xu, J. Qiu, W. Ye, X. Xu, R. Wang, C. Hu, J. Zhuang, B. Lei, W. Li, X. Zhang, G. Hu and Y. Liu, ACS Appl. Nano Mater., 5, 9140 (2022); https://doi.org/10.1021/acsanm.2c01444
K. Atacan, B. Topaloglu and M. Özacar, Appl. Catal. A Gen., 564, 33 (2018); https://doi.org/10.1016/j.apcata.2018.07.020
B. Belache, Y. Khelfaoui, M. Bououdina, T. Souier and W. Cai, J. Lumin., 207, 258 (2019); https://doi.org/10.1016/j.jlumin.2018.11.029
C.H. Ashok, K.V. Rao and C.S. Chakra, J. Atoms Mol., 4, 803 (2014).
E. Ayoman and S.G. Hosseini, J. Therm. Anal. Calorim., 123, 1213 (2016); https://doi.org/10.1007/s10973-015-5059-1
A.A. Oun and J.W. Rhim, Food Hydrocoll., 67, 45 (2017); https://doi.org/10.1016/j.foodhyd.2016.12.040
S. Jacob, A.B. Nair, J. Shah, S. Gupta, S.H.S. Boddu, N. Sreeharsha, A. Joseph, P. Shinu and M.A. Morsy, Pharmaceutics, 14, 533 (2022); https://doi.org/10.3390/pharmaceutics14030533
K. Tharani and L.C. Nehru, Rom. J. Biophys., 30, 55 (2020).
R.M. Amir, F.M. Anjum, M.I. Khan, M.R. Khan, I. Pasha and M. Nadeem, J. Food Sci. Technol., 50, 1018 (2013); https://doi.org/10.1007/s13197-011-0424-y
N. Hans, S. Gupta, F. Pattnaik, A.K. Patel, S. Naik and A. Malik, Int. J. Biol. Macromol., 250, 126230 (2023); https://doi.org/10.1016/j.ijbiomac.2023.126230.
G. Sorekine, G. Anduwan, M.N. Waimbo, H. Osora, S. Velusamy, S. Kim, Y.S. Kim and J. Charles, J. Mol. Struct., 1248, 131487 (2022); https://doi.org/10.1016/j.molstruc.2021.131487
N. Benhadria, M. Hachemaoui, F. Zaoui, A. Mokhtar, S. Boukreris, T. Attar, L. Belarbi and B. Boukoussa, J. Cluster Sci., 33, 249 (2022); https://doi.org/10.1007/s10876-020-01950-0
M. Kumar, R.R. Das, M. Samal and K. Yun, Mater. Chem. Phys., 218, 272 (2018); https://doi.org/10.1016/j.matchemphys.2018.07.048
B.A. Aragaw and A. Dagnaw, Ethiopian J. Sci. Technol., 12, 125 (1970); https://doi.org/10.4314/ejst.v12i2.2
M.J. Ndolomingo and R. Meijboom, Appl. Catal. A Gen., 506, 33 (2015); https://doi.org/10.1016/j.apcata.2015.08.036
B.A. Aragaw and A. Dagnaw, Ethiop. J. Sci. Technol., 12, 125 (2019); https://doi.org/10.4314/ejst.v12i2.2
M.P. Rao, S. Anandan, S. Suresh, A.M. Asiri and J.J. Wu, Energy Environment Focus, 4, 250 (2015); https://doi.org/10.1166/eef.2015.1168