Copyright (c) 2024 V. Nithya, B. Chirsabesan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Copper-Doped Metal Nanoferrites for Efficient Removal of Pharmaceutical Wastewater Pollutants in Membrane Bioreactor System
Corresponding Author(s) : V. Nithya
Asian Journal of Chemistry,
Vol. 36 No. 10 (2024): Vol 36 Issue 10, 2024
Abstract
Pharmaceuticals present in the aquatic environment can poison aquatic species and humans through drinking water and cause harmful bacteria to become resistant. The role of transition metal doped metal nanoferrites for the enhanced efficiency of degradation process is widely achieved. In this work, copper doped magnesium ferrite (Cu-MgFe2O4) and copper doped zinc ferrite (Cu-ZnFe2O4) nanoparticles were synthesized using a sol-gel method. X-ray diffraction (XRD) analysis confirmed the formation of the spinel structure for both samples, with crystal sizes of 16.72 nm and 59.05 nm, respectively. The magnetic properties of the samples were studied using a vibrating sample magnetometer (VSM), which revealed that the addition of Cu2+ ions has a significant impact on the magnetic properties of the nanoparticles. The saturation magnetisation (Ms), retentivity (Mr) and coercivity value (Hc) for the Cu-MgFe2O4 sample were found to be 0.18453 emu, 39.584 × 10-3 emu and 139.61 Oe, respectively, while for the Cu-ZnFe2O4 sample, the values were 0.21271 emu, 71.022 × 10-3 emu and 285.91 Oe, respectively. The impact of copper doped nanoferrites on pollutant removal from pharmaceutical wastewater using the membrane Bioreactor (MBR) system has also been accomplished. The results demonstrated the effectiveness of ferrites in reducing concentrations of heavy metals, including lead and cadmium, within acceptable ranges for inland surface water and public sewers. Furthermore, the MBR system with ferrites exhibited efficient removal of fluoride, sulphide and radioactivity, ensuring compliance with the specified standards. Although the study exhibited the potential of ferrites in pollutants removal, further optimization is necessary to achieve complete compliance with water quality standards.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.K. Kadyrzhanov, K. Egizbek, A.L. Kozlovskiy and M.V. Zdorovets, Nanomaterials, 9, 1079 (2019); https://doi.org/10.3390/nano9081079
- T. Dippong, E.A. Levei and O. Cadar, Nanomaterials, 11, 1560 (2021); https://doi.org/10.3390/nano11061560
- M.S. Chavali and M.P. Nikolova, SN Appl. Sci., 1, 607 (2019); https://doi.org/10.1007/s42452-019-0592-3
- A. Ali, T. Shah, R. Ullah, P. Zhou, M. Guo, M. Ovais, Z. Tan and Y. Rui, Front Chem., 9, 629054 (2021); https://doi.org/10.3389/fchem.2021.629054
- I. Khan, K. Saeed and I. Khan, Arab. J. Chem., 12, 908 (2019); https://doi.org/10.1016/j.arabjc.2017.05.011
- S.K. Murthy, Int. J. Nanomedicine, 2, 129 (2007).
- N. Joudeh and D. Linke, J. Nanobiotechnol., 20, 262 (2022); https://doi.org/10.1186/s12951-022-01477-8
- S. Sim and N.K. Wong, Biomed. Rep., 14, 42 (2021); https://doi.org/10.3892/br.2021.1418
- G. Xian, S. Kong, Q. Li, G. Zhang, N. Zhou, H. Du and L. Niu, Front. Chem., 8, 177 (2020); https://doi.org/10.3389/fchem.2020.00177
- M.A. Rafiq, A. Javed, M.N. Rasul, M.A. Khan and A. Hussain, Ceram. Int., 46, 4976 (2020); https://doi.org/10.1016/j.ceramint.2019.10.237
- M.I. Abdel Maksoud, R.A. Fahim, A.E. Shalan, M. Abd Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, A.A. Al-Muhtaseb, A.S. Awed, A.H. Ashour and D.W. Rooney, Environ. Chem. Lett., 19, 375 (2021); https://doi.org/10.1007/s10311-020-01075-w
- L.A. Achola, S. Shubhashish, Z. Tobin, Y. Su, L.F. Posada, Y. Dang, J. Shi, A.G. Meguerdichian, M. Jain and S.L. Suib, Chem. Mater., 34, 7692 (2022); https://doi.org/10.1021/acs.chemmater.2c00684
- M. Amiri, M. Salavati-Niasari and A. Akbari, Adv. Colloid Interface Sci., 265, 29 (2019); https://doi.org/10.1016/j.cis.2019.01.003
- L.A. Kafshgari, M. Ghorbani and A. Azizi, Particul. Sci. Technol., 37, 900 (2018); https://doi.org/10.1080/02726351.2018.1461154
- N. Gupta, P. Jain, R. Rana and S. Shrivastava, Mater. Today Proc., 4, 342 (2017); https://doi.org/10.1016/j.matpr.2017.01.031
- P.K. Roy and J. Bera, J. Mater. Process. Technol., 197, 279 (2008); https://doi.org/10.1016/j.jmatprotec.2007.06.027
- N.A. Tien, V.O. Mittova, B.V. Sladkopevtsev, V.Q. Mai, I.Y. Mittova and B.X. Vuong, Solid State Sci., 138, 107149 (2023); https://doi.org/10.1016/j.solidstatesciences.2023.107149
- R. Strobel and S.E. Pratsinis, J. Mater. Chem., 17, 4743 (2007); https://doi.org/10.1039/b711652g
- I.P. Parkin, G. Elwin, M.V. Kuznetsov, Q.A. Pankhurst, Q.T. Bui, G.D. Forster, L.F. Barquín, A.V. Komarov and Y.G. Morozov, J. Mater. Process. Technol., 110, 239 (2001); https://doi.org/10.1016/S0924-0136(00)00889-X
- T. Adschiri, Y. Hakuta and K. Arai, Ind. Eng. Chem. Res., 39, 4901 (2000); https://doi.org/10.1021/ie0003279
- D. Segal, Chemical Synthesis of Advanced Ceramic Materials, Cambridge University Press (1991).
- S.N. Pund, P.A. Nagwade, A.V. Nagawade, S.R. Thopate and A.V. Bagade, Mater. Today Proc., 60, 2194 (2022); https://doi.org/10.1016/j.matpr.2022.02.444
- Z. Dong, W. Hu, Z. Ma, C. Li and Y. Liu, Mater. Chem. Front., 3, 1952 (2019); https://doi.org/10.1039/C9QM00422J
- S.E. Shirsath, D. Wang, S.S. Jadhav, M.L. Mane and S. Li, Ferrites Obtained by Sol-Gel Method, In: L. Klein, M. Aparicio and A. Jitianu, Handbook of Sol-Gel Science and Technology, Springer, Cham, pp. 695-735 (2018).
- A.V. Gongal, D.V. Nandanwar, D.S. Badwaik, S.S. Wanjari, V.S. Harode and S.M. Suryawanshi, Nano-Struct. Nano-Objects, 39, 101248 (2024); https://doi.org/10.1016/j.nanoso.2024.101248
- M.N. Kiani, M.S. Butt, I.H. Gul, M. Saleem, M. Irfan, A.H. Baluch, M.A. Akram and M.A. Raza, ACS Omega, 8, 3755 (2023); https://doi.org/10.1021/acsomega.2c05226
- T. Vigneswari and P. Raji, J. Mol. Struct., 1127, 515 (2017); https://doi.org/10.1016/j.molstruc.2016.07.116
- D. Parajuli, N. Murali, A.V. Rao, A. Ramakrishna and K. Samatha, S. Afr. J. Chem. Eng., 42, 106 (2022); https://doi.org/10.1016/j.sajce.2022.07.009
- S.Y. Mulushoa and N. Murali, Inorg. Chem. Commun., 145, 110033 (2022); https://doi.org/10.1016/j.inoche.2022.110033
- F. Sharifianjazi, M. Moradi, N. Parvin, A. Nemati, A.J. Rad, N. Sheysi, A. Abouchenari, A. Mohammadi, S. Karbasi, A. Esmaeilkhanian, M. Irani, Z. Ahmadi, A. Pakseresht, S. Sahmani and M. Shahedi Asl, Ceram. Int., 46, 18391 (2020); https://doi.org/10.1016/j.ceramint.2020.04.202
- B. Mishra, B. Munisha, J. Nanda, K.J. Sankaran and S. Suman, Mater. Chem. Phys., 292, 126791 (2022); https://doi.org/10.1016/j.matchemphys.2022.126791
- S.F. Mansour, S. Wageh, R. Al-Wafi and M.A. Abdo, J. Alloys Compd., 856, 157437 (2021); https://doi.org/10.1016/j.jallcom.2020.157437
- P. Thakur, S. Taneja, D. Chahar, B. Ravelo and A. Thakur, J. Magn. Magn. Mater., 530, 167925 (2021); https://doi.org/10.1016/j.jmmm.2021.167925
- M.A. Rafiq, M.A. Khan, M. Asghar, S.Z. Ilyas, I. Shakir, M. Shahid and M.F. Warsi, Ceram. Int., 41, 10501 (2015); https://doi.org/10.1016/j.ceramint.2015.04.141
- S. Perveen, S. Hafeez, S. Rashid, S.U. Asad, M.Z. Khan and F. Azad, Mater. Chem. Phys., 297, 127303 (2023); https://doi.org/10.1016/j.matchemphys.2023.127303
- B. Issa, I.M. Obaidat, B.A. Albiss and Y. Haik, Int. J. Mol. Sci., 14, 21266 (2013); https://doi.org/10.3390/ijms141121266
- A. Soufi, H. Hajjaoui, R. Elmoubarki, M. Abdennouri, S. Qourzal and N. Barka, Appl. Surface Sci. Adv., 6, 100145 (2021); https://doi.org/10.1016/j.apsadv.2021.100145
- C.A. Charitidis, P. Georgiou, M.A. Koklioti, A.-F. Trompeta and V. Markakis, Manufacturing Rev., 1, 11 (2014); https://doi.org/10.1051/mfreview/2014009
References
K.K. Kadyrzhanov, K. Egizbek, A.L. Kozlovskiy and M.V. Zdorovets, Nanomaterials, 9, 1079 (2019); https://doi.org/10.3390/nano9081079
T. Dippong, E.A. Levei and O. Cadar, Nanomaterials, 11, 1560 (2021); https://doi.org/10.3390/nano11061560
M.S. Chavali and M.P. Nikolova, SN Appl. Sci., 1, 607 (2019); https://doi.org/10.1007/s42452-019-0592-3
A. Ali, T. Shah, R. Ullah, P. Zhou, M. Guo, M. Ovais, Z. Tan and Y. Rui, Front Chem., 9, 629054 (2021); https://doi.org/10.3389/fchem.2021.629054
I. Khan, K. Saeed and I. Khan, Arab. J. Chem., 12, 908 (2019); https://doi.org/10.1016/j.arabjc.2017.05.011
S.K. Murthy, Int. J. Nanomedicine, 2, 129 (2007).
N. Joudeh and D. Linke, J. Nanobiotechnol., 20, 262 (2022); https://doi.org/10.1186/s12951-022-01477-8
S. Sim and N.K. Wong, Biomed. Rep., 14, 42 (2021); https://doi.org/10.3892/br.2021.1418
G. Xian, S. Kong, Q. Li, G. Zhang, N. Zhou, H. Du and L. Niu, Front. Chem., 8, 177 (2020); https://doi.org/10.3389/fchem.2020.00177
M.A. Rafiq, A. Javed, M.N. Rasul, M.A. Khan and A. Hussain, Ceram. Int., 46, 4976 (2020); https://doi.org/10.1016/j.ceramint.2019.10.237
M.I. Abdel Maksoud, R.A. Fahim, A.E. Shalan, M. Abd Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, A.A. Al-Muhtaseb, A.S. Awed, A.H. Ashour and D.W. Rooney, Environ. Chem. Lett., 19, 375 (2021); https://doi.org/10.1007/s10311-020-01075-w
L.A. Achola, S. Shubhashish, Z. Tobin, Y. Su, L.F. Posada, Y. Dang, J. Shi, A.G. Meguerdichian, M. Jain and S.L. Suib, Chem. Mater., 34, 7692 (2022); https://doi.org/10.1021/acs.chemmater.2c00684
M. Amiri, M. Salavati-Niasari and A. Akbari, Adv. Colloid Interface Sci., 265, 29 (2019); https://doi.org/10.1016/j.cis.2019.01.003
L.A. Kafshgari, M. Ghorbani and A. Azizi, Particul. Sci. Technol., 37, 900 (2018); https://doi.org/10.1080/02726351.2018.1461154
N. Gupta, P. Jain, R. Rana and S. Shrivastava, Mater. Today Proc., 4, 342 (2017); https://doi.org/10.1016/j.matpr.2017.01.031
P.K. Roy and J. Bera, J. Mater. Process. Technol., 197, 279 (2008); https://doi.org/10.1016/j.jmatprotec.2007.06.027
N.A. Tien, V.O. Mittova, B.V. Sladkopevtsev, V.Q. Mai, I.Y. Mittova and B.X. Vuong, Solid State Sci., 138, 107149 (2023); https://doi.org/10.1016/j.solidstatesciences.2023.107149
R. Strobel and S.E. Pratsinis, J. Mater. Chem., 17, 4743 (2007); https://doi.org/10.1039/b711652g
I.P. Parkin, G. Elwin, M.V. Kuznetsov, Q.A. Pankhurst, Q.T. Bui, G.D. Forster, L.F. Barquín, A.V. Komarov and Y.G. Morozov, J. Mater. Process. Technol., 110, 239 (2001); https://doi.org/10.1016/S0924-0136(00)00889-X
T. Adschiri, Y. Hakuta and K. Arai, Ind. Eng. Chem. Res., 39, 4901 (2000); https://doi.org/10.1021/ie0003279
D. Segal, Chemical Synthesis of Advanced Ceramic Materials, Cambridge University Press (1991).
S.N. Pund, P.A. Nagwade, A.V. Nagawade, S.R. Thopate and A.V. Bagade, Mater. Today Proc., 60, 2194 (2022); https://doi.org/10.1016/j.matpr.2022.02.444
Z. Dong, W. Hu, Z. Ma, C. Li and Y. Liu, Mater. Chem. Front., 3, 1952 (2019); https://doi.org/10.1039/C9QM00422J
S.E. Shirsath, D. Wang, S.S. Jadhav, M.L. Mane and S. Li, Ferrites Obtained by Sol-Gel Method, In: L. Klein, M. Aparicio and A. Jitianu, Handbook of Sol-Gel Science and Technology, Springer, Cham, pp. 695-735 (2018).
A.V. Gongal, D.V. Nandanwar, D.S. Badwaik, S.S. Wanjari, V.S. Harode and S.M. Suryawanshi, Nano-Struct. Nano-Objects, 39, 101248 (2024); https://doi.org/10.1016/j.nanoso.2024.101248
M.N. Kiani, M.S. Butt, I.H. Gul, M. Saleem, M. Irfan, A.H. Baluch, M.A. Akram and M.A. Raza, ACS Omega, 8, 3755 (2023); https://doi.org/10.1021/acsomega.2c05226
T. Vigneswari and P. Raji, J. Mol. Struct., 1127, 515 (2017); https://doi.org/10.1016/j.molstruc.2016.07.116
D. Parajuli, N. Murali, A.V. Rao, A. Ramakrishna and K. Samatha, S. Afr. J. Chem. Eng., 42, 106 (2022); https://doi.org/10.1016/j.sajce.2022.07.009
S.Y. Mulushoa and N. Murali, Inorg. Chem. Commun., 145, 110033 (2022); https://doi.org/10.1016/j.inoche.2022.110033
F. Sharifianjazi, M. Moradi, N. Parvin, A. Nemati, A.J. Rad, N. Sheysi, A. Abouchenari, A. Mohammadi, S. Karbasi, A. Esmaeilkhanian, M. Irani, Z. Ahmadi, A. Pakseresht, S. Sahmani and M. Shahedi Asl, Ceram. Int., 46, 18391 (2020); https://doi.org/10.1016/j.ceramint.2020.04.202
B. Mishra, B. Munisha, J. Nanda, K.J. Sankaran and S. Suman, Mater. Chem. Phys., 292, 126791 (2022); https://doi.org/10.1016/j.matchemphys.2022.126791
S.F. Mansour, S. Wageh, R. Al-Wafi and M.A. Abdo, J. Alloys Compd., 856, 157437 (2021); https://doi.org/10.1016/j.jallcom.2020.157437
P. Thakur, S. Taneja, D. Chahar, B. Ravelo and A. Thakur, J. Magn. Magn. Mater., 530, 167925 (2021); https://doi.org/10.1016/j.jmmm.2021.167925
M.A. Rafiq, M.A. Khan, M. Asghar, S.Z. Ilyas, I. Shakir, M. Shahid and M.F. Warsi, Ceram. Int., 41, 10501 (2015); https://doi.org/10.1016/j.ceramint.2015.04.141
S. Perveen, S. Hafeez, S. Rashid, S.U. Asad, M.Z. Khan and F. Azad, Mater. Chem. Phys., 297, 127303 (2023); https://doi.org/10.1016/j.matchemphys.2023.127303
B. Issa, I.M. Obaidat, B.A. Albiss and Y. Haik, Int. J. Mol. Sci., 14, 21266 (2013); https://doi.org/10.3390/ijms141121266
A. Soufi, H. Hajjaoui, R. Elmoubarki, M. Abdennouri, S. Qourzal and N. Barka, Appl. Surface Sci. Adv., 6, 100145 (2021); https://doi.org/10.1016/j.apsadv.2021.100145
C.A. Charitidis, P. Georgiou, M.A. Koklioti, A.-F. Trompeta and V. Markakis, Manufacturing Rev., 1, 11 (2014); https://doi.org/10.1051/mfreview/2014009