Copyright (c) 2024 Winfred J John, Jimla Pushpam
This work is licensed under a Creative Commons Attribution 4.0 International License.
DFT, Structure Activity Relationship, Fukui, Wave Function, NBO, NLO, Spectral and Hole-Electron Analyses of Dexmethylphenidate
Corresponding Author(s) : J. Winfred Jebaraj
Asian Journal of Chemistry,
Vol. 36 No. 10 (2024): Vol 36 Issue 10, 2024
Abstract
Dexmethylphenidate (DMP) is used to treat attention deficit hyperactivity disorder (ADHD) and belongs to the central nervous system (CNS) stimulant group of medicines. The physical properties of DMP were analyzed under the DFT/B3LYP/6-311++G(d,p) basis set. The ESP study reveals the electrophilic attack is possible, while FMO analysis shows that the molecule is hard, stable and an electron donor. The non-covalent interaction (NCI) study explains that van der Waals and steric repulsion forces are observed. The HEI studies indicated that this molecule has CT excitation in the S0→S5 state. The shaded surface map analysis reveals the presence of electron depletion regions in this molecule. The UV-Vis spectral analysis was carried out in various solvents. The Fukui function analysis conveys that 7C is the best domain for electrophilic attack. Theoretical IR determinations and NLO properties were also performed. The structure-activity relationship findings were performed in order to improve the docking score.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Publishing: Arlington, USA, edn 5, p. 59 (2013).
- Diagnostic and Statistical Manual of Mental Disorders, Text Revision (DSM-5-TR), American Psychiatric Publishing, Washington D.C., edn 5 (2022).
- D.M. Foreman, Arch. Dis. Child., 91, 192 (2005); https://doi.org/10.1136/adc.2004.064576
- T.E. Brown, Curr. Psychiatry Rep., 10, 407 (2008); https://doi.org/10.1007/s11920-008-0065-7
- S.V. Faraone and H. Larsson, Mol. Psychiatry, 24, 562 (2019); https://doi.org/10.1038/s41380-018-0070-0
- M.D. Moen and S.J. Keam, CNS Drugs, 23, 1057 (2009); https://doi.org/10.2165/11201140-000000000-00000
- T. van Mourik, M. Bühl and M.P. Gaigeot, Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 372, 20120488 (2014); https://doi.org/10.1098/rsta.2012.0488
- ACD/Chemsketch, 2017.2.1, Advanced Chemistry Development, Inc. (ACD/Labs), Oronto, ON, Canada (2017).
- M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek and G.R. Hutchison, J. Cheminform., 4, 17 (2012); https://doi.org/10.1186/1758-2946-4-17
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G. E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Peterson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R.Comperts, B. Mennucci, H.P. Hratchian, J.V.Oritz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F.Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vereven, K. throssell, J.A.Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Borhters, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam. M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J.B. Forseman and D.J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT (2016).
- R. Dennington, T. Keith and J. Millam, Semichem Inc., Shawnee Mission, KS (2016).
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- N. Singla and P. Chowdhury, J. Mol. Struct., 1045, 72 (2013); https://doi.org/10.1016/j.molstruc.2013.04.015
- N.M. O’Boyle and J.G. Vos, GaussSum 3.0, Dublin City University (2005).
- T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
- W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 14, 33 (1996); https://doi.org/10.1016/0263-7855(96)00018-5
- M.H. Jamróz, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114, 220 (2013); https://doi.org/10.1016/j.saa.2013.05.096
- P. Rajamani, V. Vijayakumar, N. Sundaraganesan, M. Jeeva and M.S. Boobalan, Results Chem., 3, 100096 (2021); https://doi.org/10.1016/j.rechem.2021.100096
- V. Amir-Ebrahimi, A. Choplin, J. Demaison and G. Roussy, J. Mol. Spectrosc., 89, 42 (1981); https://doi.org/10.1016/0022-2852(81)90158-2
- M. Sardari, F.K. Fotooh and M.R. Nateghi, J. Mol. Model., 24, 148 (2018); https://doi.org/10.1007/s00894-018-3667-y
- C.Y. Panicker, K.R. Ambujakshan, H.T. Varghese, S. Mathew, S. Ganguli, A.K. Nanda and C.V. Alsenoy, J. Raman Spectrosc., 40, 527 (2009); https://doi.org/10.1002/jrs.2159
- R. Arulraj, S. Sivakumar, S. Suresh and K. Anitha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 232, 118166 (2020); https://doi.org/10.1016/j.saa.2020.118166
- T.H.M. Nayaka, I. Pushpavathi, Pavithra and Y.R. Nagesh, Russ. J. Bioorganic Chem., 50, 211 (2024); https://doi.org/10.1134/S1068162024010229
- L. Xiao-Hong, L. Xiang-Ru and Z. Xian-Zhou, Comput. Theor. Chem., 969, 27 (2011); https://doi.org/10.1016/j.comptc.2011.05.010
- H. Singh, Chem. Phys., 524, 1 (2019); https://doi.org/10.1016/j.chemphys.2019.05.003
- R.G. Pearson, J. Org. Chem., 54, 1423 (1989); https://doi.org/10.1021/jo00267a034
- K. Fukui, T. Yonezawa and H. Shingu, J. Chem. Phys., 20, 722 (1952); https://doi.org/10.1063/1.1700523
- A.P. Bandyopadhyay, A. Karmakar, J. Deb, U. Sarkar and M.M. Seikh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 228, 117827 (2020); https://doi.org/10.1016/j.saa.2019.117827
- Z. Liu, T. Lu and Q. Chen, Carbon, 165, 461 (2020); https://doi.org/10.1016/j.carbon.2020.05.023
- A.D. Isravel, J.K. Jeyaraj, S. Thangasamy and W.J. John, Comput. Theor. Chem., 1202, 113296 (2021); https://doi.org/10.1016/j.comptc.2021.113296
- J. Poater, M. Duran, M. Solà and B. Silvi, Chem. Rev., 105, 3911 (2005); https://doi.org/10.1021/cr030085x
- E. Matito, M. Duran and M. Solà, J. Chem. Phys., 122, 014109 (2005); https://doi.org/10.1063/1.2222352
- T.M. Krygowski, J. Chem. Inf. Comput. Sci., 33, 70 (1993); https://doi.org/10.1021/ci00011a011
- C.W. Bird, Tetrahedron, 41, 1409 (1985); https://doi.org/10.1016/S0040-4020(01)96543-3
- B. Donner, M. Kleber, C. Bracher and H.J. Kreuzer, Am. J. Phys., 73, 690 (2005); https://doi.org/10.1119/1.1930867
- H.L. Schmider and A.D. Becke, J. Mol. Struct. THEOCHEM., 527, 51 (2000); https://doi.org/10.1016/S0166-1280(00)00477-2
- M.R. Bozorgmehr, J. Chamani and G. Moslehi, J. Biomol. Struct. Dyn., 33, 1669 (2015); https://doi.org/10.1080/07391102.2014.967299
- R.G. Parr and W. Yang, J. Am. Chem. Soc., 106, 4049 (1984); https://doi.org/10.1021/ja00326a036
- A.O. Zacharias, A. Varghese, K.B. Akshaya, M.S. Savitha and L. George, J. Mol. Struct., 1158, 1 (2018); https://doi.org/10.1016/j.molstruc.2018.01.002
- C. Morell, A. Grand and A. Toro-Labbé, J. Phys. Chem. A, 109, 205 (2005); https://doi.org/10.1021/jp046577a
- L.J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall: London, U.K. (1975).
- G. Socrates, Infrared and Raman Characteristics Group Frequencies, Wiley: New York, NY, USA, edn.: 3 (2001).
- N. Sundaraganesan, H. Saleem, S. Mohan, M. Ramalingam and V. Sethuraman, Spectrochim. Acta A Mol. Biomol. Spectrosc., 62, 740 (2005); https://doi.org/10.1016/j.saa.2005.02.043
- V. Krishnakumar and R. John Xavier, Indian J. Pure Appl. Phys., 41, 597 (2003).
- V. Krishnakumar and N. Prabavathi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 71, 449 (2008); https://doi.org/10.1016/j.saa.2007.12.033
- A. Altun, K. Golcuk and M. Kumru, J. Mol. Struct. THEOCHEM., 637, 155 (2003); https://doi.org/10.1016/S0166-1280(03)00531-1
- S.J. Singh and S.M. Pandey, Indian J. Pure Appl. Phys., 12, 300 (1974).
- Y.X. Sun, Q.L. Hao, Z.X. Yu, W.J. Jiang, L.D. Lu and X. Wang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 73, 892 (2009); https://doi.org/10.1016/j.saa.2009.04.012
- N. Sundaraganesan, B.D. Joshua and T. Radjakoumar, Indian J. Pure Appl. Phys., 47, 248 (2009).
- G. Shakila, S. Periandy and S. Ramalingam, J. At. Mol. Opt. Phys., 2011, 512841 (2011); https://doi.org/10.1155/2011/512841
- V.R. Dani, Organic Spectroscopy, Tata-MacGraw Hill Publishing: New Delhi, India (1995).
- A.R. Prabakaran and S. Mohan, Indian J. Phys., 63B, 468 (1989).
- D. Vedal, O. Ellestad, P. Klaboe and G. Hagen, Spectrochim. Acta A, 32A, 877 (1976); https://doi.org/10.1016/0584-8539(76)80159-6
- N. Sundaraganesan, G. Elango, C. Meganathan, B. Karthikeyan and M. Kurt, Mol. Simul., 35, 705 (2009); https://doi.org/10.1080/08927020902873992
- D. Sajan, J. Binoy, B. Pradeep, K.V. Krishna, V.B. Kartha, I.H. Joe and V.S. Jayakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 173 (2004); https://doi.org/10.1016/S1386-1425(03)00193-8
- K. Furic, V. Mohacek, M. Bonifacic and I. Stefanic, J. Mol. Struct., 267, 39 (1992); https://doi.org/10.1016/0022-2860(92)87006-H
- S. Sambandam, B. Sarangapani, S. Paramasivam and R. Chinnaiyan, Biointerface Res. Appl. Chem., 11, 11833 (2021); https://doi.org/10.33263/BRIAC114.1183311855
- J.J. Kores, I.A. Danish, T. Sasitha, J.G. Stuart, E.J. Pushpam and J.W. Jebaraj, Heliyon, 7, e08377 (2021); https://doi.org/10.1016/j.heliyon.2021.e08377
- A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); https://doi.org/10.1021/cr00088a005
- M. Arivazhagan and R. Kavitha, J. Mol. Struct., 1011, 111 (2012); https://doi.org/10.1016/j.molstruc.2011.12.006
- E. Kavitha, N. Sundaraganesan, S. Sebastian and M. Kurt, Spectrochim. Acta A Mol. Biomol. Spectrosc., 77, 612 (2010); https://doi.org/10.1016/j.saa.2010.06.034
- L. Li, C. Wu, Z. Wang, L. Zhao, Z. Li, C. Sun and T. Sun, Spectrochim. Acta A Mol. Biomol. Spectrosc., 136, 338 (2015); https://doi.org/10.1016/j.saa.2014.08.153
- D.A. Kleinman, Phys. Rev., 126, 1977 (1962); https://doi.org/10.1103/PhysRev.126.1977
- K. Sambathkumar and G. Ravichandran, Elixir Comput. Chem., 91, 38077 (2016).
- B. Rajasekhar, P.K. Muhammad Hijaz and T. Swu, J. Mol. Struct., 1168, 212 (2018); https://doi.org/10.1016/j.molstruc.2018.04.090
- T. Sasitha and W.J. John, Heliyon, 7, e06127 (2021); https://doi.org/10.1016/j.heliyon.2021.e06127
- G.N. Ramachandran, C. Ramakrishnan and V. Sasisekharan, J. Mol. Biol., 7, 95 (1963); https://doi.org/10.1016/S0022-2836(63)80023-6
References
Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Publishing: Arlington, USA, edn 5, p. 59 (2013).
Diagnostic and Statistical Manual of Mental Disorders, Text Revision (DSM-5-TR), American Psychiatric Publishing, Washington D.C., edn 5 (2022).
D.M. Foreman, Arch. Dis. Child., 91, 192 (2005); https://doi.org/10.1136/adc.2004.064576
T.E. Brown, Curr. Psychiatry Rep., 10, 407 (2008); https://doi.org/10.1007/s11920-008-0065-7
S.V. Faraone and H. Larsson, Mol. Psychiatry, 24, 562 (2019); https://doi.org/10.1038/s41380-018-0070-0
M.D. Moen and S.J. Keam, CNS Drugs, 23, 1057 (2009); https://doi.org/10.2165/11201140-000000000-00000
T. van Mourik, M. Bühl and M.P. Gaigeot, Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 372, 20120488 (2014); https://doi.org/10.1098/rsta.2012.0488
ACD/Chemsketch, 2017.2.1, Advanced Chemistry Development, Inc. (ACD/Labs), Oronto, ON, Canada (2017).
M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek and G.R. Hutchison, J. Cheminform., 4, 17 (2012); https://doi.org/10.1186/1758-2946-4-17
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G. E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Peterson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R.Comperts, B. Mennucci, H.P. Hratchian, J.V.Oritz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F.Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vereven, K. throssell, J.A.Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Borhters, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam. M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J.B. Forseman and D.J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT (2016).
R. Dennington, T. Keith and J. Millam, Semichem Inc., Shawnee Mission, KS (2016).
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
N. Singla and P. Chowdhury, J. Mol. Struct., 1045, 72 (2013); https://doi.org/10.1016/j.molstruc.2013.04.015
N.M. O’Boyle and J.G. Vos, GaussSum 3.0, Dublin City University (2005).
T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 14, 33 (1996); https://doi.org/10.1016/0263-7855(96)00018-5
M.H. Jamróz, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114, 220 (2013); https://doi.org/10.1016/j.saa.2013.05.096
P. Rajamani, V. Vijayakumar, N. Sundaraganesan, M. Jeeva and M.S. Boobalan, Results Chem., 3, 100096 (2021); https://doi.org/10.1016/j.rechem.2021.100096
V. Amir-Ebrahimi, A. Choplin, J. Demaison and G. Roussy, J. Mol. Spectrosc., 89, 42 (1981); https://doi.org/10.1016/0022-2852(81)90158-2
M. Sardari, F.K. Fotooh and M.R. Nateghi, J. Mol. Model., 24, 148 (2018); https://doi.org/10.1007/s00894-018-3667-y
C.Y. Panicker, K.R. Ambujakshan, H.T. Varghese, S. Mathew, S. Ganguli, A.K. Nanda and C.V. Alsenoy, J. Raman Spectrosc., 40, 527 (2009); https://doi.org/10.1002/jrs.2159
R. Arulraj, S. Sivakumar, S. Suresh and K. Anitha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 232, 118166 (2020); https://doi.org/10.1016/j.saa.2020.118166
T.H.M. Nayaka, I. Pushpavathi, Pavithra and Y.R. Nagesh, Russ. J. Bioorganic Chem., 50, 211 (2024); https://doi.org/10.1134/S1068162024010229
L. Xiao-Hong, L. Xiang-Ru and Z. Xian-Zhou, Comput. Theor. Chem., 969, 27 (2011); https://doi.org/10.1016/j.comptc.2011.05.010
H. Singh, Chem. Phys., 524, 1 (2019); https://doi.org/10.1016/j.chemphys.2019.05.003
R.G. Pearson, J. Org. Chem., 54, 1423 (1989); https://doi.org/10.1021/jo00267a034
K. Fukui, T. Yonezawa and H. Shingu, J. Chem. Phys., 20, 722 (1952); https://doi.org/10.1063/1.1700523
A.P. Bandyopadhyay, A. Karmakar, J. Deb, U. Sarkar and M.M. Seikh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 228, 117827 (2020); https://doi.org/10.1016/j.saa.2019.117827
Z. Liu, T. Lu and Q. Chen, Carbon, 165, 461 (2020); https://doi.org/10.1016/j.carbon.2020.05.023
A.D. Isravel, J.K. Jeyaraj, S. Thangasamy and W.J. John, Comput. Theor. Chem., 1202, 113296 (2021); https://doi.org/10.1016/j.comptc.2021.113296
J. Poater, M. Duran, M. Solà and B. Silvi, Chem. Rev., 105, 3911 (2005); https://doi.org/10.1021/cr030085x
E. Matito, M. Duran and M. Solà, J. Chem. Phys., 122, 014109 (2005); https://doi.org/10.1063/1.2222352
T.M. Krygowski, J. Chem. Inf. Comput. Sci., 33, 70 (1993); https://doi.org/10.1021/ci00011a011
C.W. Bird, Tetrahedron, 41, 1409 (1985); https://doi.org/10.1016/S0040-4020(01)96543-3
B. Donner, M. Kleber, C. Bracher and H.J. Kreuzer, Am. J. Phys., 73, 690 (2005); https://doi.org/10.1119/1.1930867
H.L. Schmider and A.D. Becke, J. Mol. Struct. THEOCHEM., 527, 51 (2000); https://doi.org/10.1016/S0166-1280(00)00477-2
M.R. Bozorgmehr, J. Chamani and G. Moslehi, J. Biomol. Struct. Dyn., 33, 1669 (2015); https://doi.org/10.1080/07391102.2014.967299
R.G. Parr and W. Yang, J. Am. Chem. Soc., 106, 4049 (1984); https://doi.org/10.1021/ja00326a036
A.O. Zacharias, A. Varghese, K.B. Akshaya, M.S. Savitha and L. George, J. Mol. Struct., 1158, 1 (2018); https://doi.org/10.1016/j.molstruc.2018.01.002
C. Morell, A. Grand and A. Toro-Labbé, J. Phys. Chem. A, 109, 205 (2005); https://doi.org/10.1021/jp046577a
L.J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall: London, U.K. (1975).
G. Socrates, Infrared and Raman Characteristics Group Frequencies, Wiley: New York, NY, USA, edn.: 3 (2001).
N. Sundaraganesan, H. Saleem, S. Mohan, M. Ramalingam and V. Sethuraman, Spectrochim. Acta A Mol. Biomol. Spectrosc., 62, 740 (2005); https://doi.org/10.1016/j.saa.2005.02.043
V. Krishnakumar and R. John Xavier, Indian J. Pure Appl. Phys., 41, 597 (2003).
V. Krishnakumar and N. Prabavathi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 71, 449 (2008); https://doi.org/10.1016/j.saa.2007.12.033
A. Altun, K. Golcuk and M. Kumru, J. Mol. Struct. THEOCHEM., 637, 155 (2003); https://doi.org/10.1016/S0166-1280(03)00531-1
S.J. Singh and S.M. Pandey, Indian J. Pure Appl. Phys., 12, 300 (1974).
Y.X. Sun, Q.L. Hao, Z.X. Yu, W.J. Jiang, L.D. Lu and X. Wang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 73, 892 (2009); https://doi.org/10.1016/j.saa.2009.04.012
N. Sundaraganesan, B.D. Joshua and T. Radjakoumar, Indian J. Pure Appl. Phys., 47, 248 (2009).
G. Shakila, S. Periandy and S. Ramalingam, J. At. Mol. Opt. Phys., 2011, 512841 (2011); https://doi.org/10.1155/2011/512841
V.R. Dani, Organic Spectroscopy, Tata-MacGraw Hill Publishing: New Delhi, India (1995).
A.R. Prabakaran and S. Mohan, Indian J. Phys., 63B, 468 (1989).
D. Vedal, O. Ellestad, P. Klaboe and G. Hagen, Spectrochim. Acta A, 32A, 877 (1976); https://doi.org/10.1016/0584-8539(76)80159-6
N. Sundaraganesan, G. Elango, C. Meganathan, B. Karthikeyan and M. Kurt, Mol. Simul., 35, 705 (2009); https://doi.org/10.1080/08927020902873992
D. Sajan, J. Binoy, B. Pradeep, K.V. Krishna, V.B. Kartha, I.H. Joe and V.S. Jayakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 173 (2004); https://doi.org/10.1016/S1386-1425(03)00193-8
K. Furic, V. Mohacek, M. Bonifacic and I. Stefanic, J. Mol. Struct., 267, 39 (1992); https://doi.org/10.1016/0022-2860(92)87006-H
S. Sambandam, B. Sarangapani, S. Paramasivam and R. Chinnaiyan, Biointerface Res. Appl. Chem., 11, 11833 (2021); https://doi.org/10.33263/BRIAC114.1183311855
J.J. Kores, I.A. Danish, T. Sasitha, J.G. Stuart, E.J. Pushpam and J.W. Jebaraj, Heliyon, 7, e08377 (2021); https://doi.org/10.1016/j.heliyon.2021.e08377
A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); https://doi.org/10.1021/cr00088a005
M. Arivazhagan and R. Kavitha, J. Mol. Struct., 1011, 111 (2012); https://doi.org/10.1016/j.molstruc.2011.12.006
E. Kavitha, N. Sundaraganesan, S. Sebastian and M. Kurt, Spectrochim. Acta A Mol. Biomol. Spectrosc., 77, 612 (2010); https://doi.org/10.1016/j.saa.2010.06.034
L. Li, C. Wu, Z. Wang, L. Zhao, Z. Li, C. Sun and T. Sun, Spectrochim. Acta A Mol. Biomol. Spectrosc., 136, 338 (2015); https://doi.org/10.1016/j.saa.2014.08.153
D.A. Kleinman, Phys. Rev., 126, 1977 (1962); https://doi.org/10.1103/PhysRev.126.1977
K. Sambathkumar and G. Ravichandran, Elixir Comput. Chem., 91, 38077 (2016).
B. Rajasekhar, P.K. Muhammad Hijaz and T. Swu, J. Mol. Struct., 1168, 212 (2018); https://doi.org/10.1016/j.molstruc.2018.04.090
T. Sasitha and W.J. John, Heliyon, 7, e06127 (2021); https://doi.org/10.1016/j.heliyon.2021.e06127
G.N. Ramachandran, C. Ramakrishnan and V. Sasisekharan, J. Mol. Biol., 7, 95 (1963); https://doi.org/10.1016/S0022-2836(63)80023-6