Copyright (c) 2024 Elbright Dillu, Saima Habib Khan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fabrication of Chitosan-Cu2O Nanocomposite through Ethanol Assisted Reduction
Corresponding Author(s) : E. Dillu
Asian Journal of Chemistry,
Vol. 36 No. 10 (2024): Vol 36 Issue 10, 2024
Abstract
The semiconducting characteristics of copper oxides have intrigued researchers like photocatalysis and sensors. Coating these nanoparticles with biocompatible polymers like chitosan enhances their properties, such as biocompatibility and non-toxicity, while reducing production costs. This work details the successful in situ production of a biocompatibile nanocomposite, with Cu2O nanoparticles dispersed in a chitosan matrix using ethanol as a reducing agent. Advanced techniques including ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging combined with selected area electron diffraction (SAED) analysis, have been employed to characterize the nanocomposite material with additional relevant properties analyzed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.T.V. Phan, D.T. Phan, X.T. Cao, T.C. Huynh and J. Oh, Nanomaterials, 11, 273 (2021); https://doi.org/10.3390/nano11020273
- N. Baig, I. Kammakakam and W. Falath, Mater. Adv., 2, 1821 (2021); https://doi.org/10.1039/d0ma00807a
- M. Rafique, A.J. Shaikh, R. Rasheed, M. Tahir, H.F. Bakhat, M. Rafique and F. Rabbani, Nano, 12, 1750043 (2017); https://doi.org/10.1142/s1793292017500436
- T.T.B. Quyen, N.N.T. My, D.T.T. Ngan, D.T. Pham and D.V.H. Thien, Mongolian J. Chem., 22, 31 (2021); https://doi.org/10.5564/mjc.v22i48.1564
- N.A. Saad,, M.H. Dar, E. Ramya, S.R.G. Naraharisetty and D.N. Rao, J. Mater. Sci., 54, 188 (2018); https://doi.org/10.1007/s10853-018-2811-5
- M. P. Nikolova and M.S. Chavali, Biomimetics, 5, 27 (2020); https://doi.org/10.3390/biomimetics5020027
- G. Borkow and J. Gabbay, Curr. Chem. Biol., 3, 272 (2009); https://doi.org/10.2174/187231309789054887
- B. Sharma, P. Malik and P. Jain, Mater. Today Commun., 16, 353 (2018); https://doi.org/10.1016/j.mtcomm.2018.07.004
- G.L. Vanti, S. Masaphy, M.M. Kurjogi, S.V. Chakrasali and V.B. Nargund, Int. J. Biol. Macromol., 156, 1387 (2020); https://doi.org/10.1016/j.ijbiomac.2019.11.179
- A.Z. Hameed, S.A. Raj, J. Kandasamy, M.A. Baghdadi and M.A. Shahzad, Polymers, 14, 2335 (2022); https://doi.org/10.3390/polym14122335
- A. M. Muthukrishnan, J. Nanomed. Nanotechnol., 6, 251 (2015); https://doi.org/10.4172/2157-7439.1000251
- M.M. Jaworska and G.A. Roberts, Chem. Process Eng., 37, 261 (2016); http://dx.doi.org/10.1515/cpe-2016-0021
- C.P. Jiménez-Gómez and J.A. Cecili, Molecules, 25, 3981 (2020); https://doi.org/10.3390/molecules25173981
- B. Geng, Z. Jin, T. Li and X. Qi, Sci. Total Environ., 407, 4994 (2009); https://doi.org/10.1016/j.scitotenv.2009.05.051
- E. Tabesh, H. Salimijazi, M. Kharaziha, M. Mahmoudi and M. Hejazi, Surf. Coat. Technol., 364, 239 (2019); https://doi.org/10.1016/j.surfcoat.2019.02.040
- T. Jayaramudu, K. Varaprasad, R.D. Pyarasani, K.R. Reddy, K.D. Kumar, A. Akbari-Fakhrabadi, R.V. Mangalaraja and A. John, Int. J. Biol. Macromol., 128, 499 (2019); https://doi.org/10.1016/j.ijbiomac.2019.01.145
- N. Ali, Awais, T. Kamal, M. Ul-Islam, A. Khan, S.A.A. Shah and A. Zada, Int. J. Biol. Macromol., 111, 832 (2018); https://doi.org/10.1016/j.ijbiomac.2018.01.092
- N.M. Zain, A.G.F. Stapley and G. Shama, Carbohydr. Polym., 112, 195 (2014); https://doi.org/10.1016/j.carbpol.2014.05.081
- M. Usman, N.A. Ibrahim, K. Shameli, N. Zainuddin and W.M.Z.W. Yunus, Molecules, 17, 14928 (2012); https://doi.org/10.3390/molecules171214928
- K. Tokarek, J.L. Hueso, P. Kustrowski, G. Stochel and A. Kyziol, Eur. J. Inorg. Chem., 2013, 4940 (2013); https://doi.org/10.1002/ejic.201300594
- E. M. Bakhsh, F. Ali, S. B. Khan, H. M. Marwani, E. Y. Danish, A. M. Asiri, Int. J. Biol. Macromol., 131, 666 (2019); https://doi.org/10.1016/j.ijbiomac.2019.03.095
- S. Chandra, A. Kumar and P.K. Tomar, J. Saudi Chem. Soc., 18, 149 (2014); https://doi.org/10.1016/j.jscs.2011.06.009
- A. Pal, S. Shah and S. Devi, Mater. Chem. Phys., 114, 530 (2009); https://doi.org/10.1016/j.matchemphys.2008.11.056
- M.C. Crisan, M. Teodora and M. Lucian, Appl. Sci., 12, 141 (2021); https://doi.org/10.3390/app12010141
- J. Quinson, S. Neumann, L. Kacenauskaite, J.J.K. Kirkensgaard, J. Bucher, S.B. Simonsen, L.T. Kuhn, A. Zana, T. Vosch, M. Oezaslan, S. Kunz and M. Arenz, Chem. Eur. J., 26, 9012 (2020); https://doi.org/10.1002/chem.202001553
- M. Prause, H. Schulz and D. Wagler, Acta Biotechnol., 4, 143 (1984); https://doi.org/10.1002/abio.370040210
- M.B. Kumar, React. Funct. Polym., 46, 1 (2000); https://doi.org/10.1016/s1381-5148(00)00038-9
- H.E. Knidri, R. Belaabed, A. Addaou, A. Laajeb and A. Lahsini, Int. J. Biol. Macromol., 120, 1181 (2018); https://doi.org/10.1016/j.ijbiomac.2018.08.139
- S. Ayyappan, R. Gopalan, G. N. Subbanna and C.N.R. Rao, J. Mater. Res., 12, 398 (1997); https://doi.org/10.1557/jmr.1997.0057
- H.J. Hah, S.M. Koo and S.H. Lee, J. Sol-Gel Sci. Technol., 26, 467 (2003); https://doi.org/10.1023/A:1020710307359
- B. Kodasi, R.R. Kamble, J. Manjanna, S.R. Hoolageri, L. Bheemayya, V.B. Nadoni, P.K. Bayannavar, S. Dixit, S.K. Vootla and V.M. Kumbar, J. Trace Elem. Miner., 3, 100044 (2023); https://doi.org/10.1016/j.jtemin.2022.100044
- N. Zayyoun, L. Bahmad, L. Laânab and B. Jaber, Appl. Phys. A, 122, 488 (2016); https://doi.org/10.1007/s00339-016-0024-9
- D. Verma, R. Malik, J. Meena and R. Rameshwari, J. Appl. Nat. Sci., 13, 544 (2021); https://doi.org/10.31018/jans.v13i2.2635
- Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou and M. Tao, Mater. Sci. Poland, 28, 467 (2010).
- S. M. Butte and S. A. Waghuley, AIP Conf. Proc., 2220, 020093 (2020); https://doi.org/10.1063/5.0001644
- S.S. Sawant, A.D. Bhagwat and C.M. Mahajan, J. Nano-Electron. Phys., 8, 01035 (2016); https://essuir.sumdu.edu.ua/handle/123456789/44869
- A. Rezaie, M. Montazer and M.M. Rad, Fibers Polym., 18, 1269 (2017); https://doi.org/10.1007/s12221-017-7263-z
- J.M. Prajapati, D. Das, S. Katlakunta, N. Maramu, V. Ranjan and S. Mallick, Inorg. Chim. Acta, 515, 120069 (2021); https://doi.org/10.1016/j.ica.2020.120069
- A. Yang, S.-P. Li, Y. Wang, L. Y. Wang, X. Bao and R. Yang, Trans. Nonferrous Met. Soc. China, 25, 3643 (2015); https://doi.org/10.1016/s1003-6326(15)64005-5
- A. Oral, E. Mensur, M. Aslan, E. Basaran, Mater. Chem. Phys., 83, 140 (2004); https://doi.org/10.1016/j.matchemphys.2003.09.015
- J. Shu, Z. Wang, Y. Huang, N. Huang, C. Ren and W. Zhang, J. Alloys Compds., 633, 338 (2015); https://doi.org/10.1016/j.jallcom.2015.02.048
- T.U. Rahman, H. Roy, A.Z. Shoronika, A. Fariha, M. Hasan, M.S. Islam, H.M. Marwani, A. Islam, M.M. Hasan, A.K. Alsukaibi, M.M. Rahman and M.R. Awual, J. Mol. Liq., 388, 122764 (2023); https://doi.org/10.1016/j.molliq.2023.122764
- B.A. Koiki and O.A. Arotiba, RSC Adv., 10, 36514 (2020); https://doi.org/10.1039/d0ra06858f
- E. M. Dahmane, M. Taourirte, N. Eladlani and M. Rhazi, Int. J. Polym. Anal. Characteriz., 19, 342 (2014); https://doi.org/10.1080/1023666x.2014.902577
- J. Chen, P. Zhou, J.-L. Li and S. Li, Carbohydr. Polym., 67, 623 (2007); https://doi.org/10.1016/j.carbpol.2006.07.003
- M. Rinaudo, Progr. Polym. Sci., 31, 603 (2006); https://doi.org/10.1016/j.progpolymsci.2006.06.001
- B. Fatima, eds.: M. Khan, G.M. do Nascimento and M. El-Azazy, Quantitative Analysis by IR: Determination of Chitin/Chitosan DD, In: Modern Spectroscopic Techniques and Applications, IntechOpen eBooks (2020); https://doi.org/10.5772/intechopen.89708
- J. Wang, W. Xiao, H. Teng, H.-M. Yin, X. Chen, J. Xianjing, C. Huo, M. Teng, S. Ma and A.A.N.M. Al-Haimi, Environ. Technol., 41, 2157 (2020); https://doi.org/10.1080/09593330.2018.1556740
- Z. Li, Y. Zhang, H. Yu and H. Zhao, Ceram. Int., 48, 4066 (2022); https://doi.org/10.1016/j.ceramint.2021.10.196
- A. El-Shaer, W. Ismail and M. Abdelfatah, Mater. Res. Bull., 116, 111 (2019); https://doi.org/10.1016/j.materresbull.2019.04.005
- S. Kapoor, N. Goel and S. Singhal, Mater. Today: Proc. 14(Part 2), 445 (2019); https://doi.org/10.1016/j.matpr.2019.04.167
- H. Lahmar, F. Setifi, A. Azizi, G. Schmerber and A. Dinia, J. Alloys Compds., 718, 36 (2017); https://doi.org/10.1016/j.jallcom.2017.05.054
- Y. Xu, K.M. Kim, M.A. Hanna and D. Nag, Ind. Crops Prod., 21, 185 (2005); https://doi.org/10.1016/j.indcrop.2004.03.002
- M. Kaya, T. Baran, A. Mentes, M. Asaroglu, G. Sezen and K.Ö. Tozak, Food Biophys., 9, 145 (2014); https://doi.org/10.1007/s11483-013-9327-y
- T.T.V. Phan, G. Hoang, V.T. Nguyen, T.P. Nguyen, H.H. Kim, S. Mondal, P. Manivasagan, M.S. Moorthy, K.D. Lee and O. Junghwan, Carbohydr. Polym., 205, 340 (2019); https://doi.org/10.1016/j.carbpol.2018.10.062
- L. Chen, Y. Zhang, R. Sun, F. Zhou, W. Zeng, D. Lu and C.-P. Wong, Sci. Rep., 5, 9672 (2015); https://doi.org/10.1038/srep09672
- T. Abiraman and S. Balasubramanian, Ind. Eng. Chem. Res., 56, 1498 (2017); https://doi.org/10.1021/acs.iecr.6b04692
- M. Sportelli, A. Volpe, R. Picca, A. Trapani, C. Palazzo, A. Ancona, P. Lugarà, G. Trapani and N. Cioffi, Nanomaterials, 7, 6 (2017); https://doi.org/10.3390/nano7010006
- P.V.F. De Sousa, A.F. De Oliveira, A.A. Da Silva and R.P. Lopes, Environ. Sci. Pollut. Res. Int., 26, 14883 (2019); https://doi.org/10.1007/s11356-019-04989-3
- M. Kumar, V. Bhatt, O.S. Nayal, S. Sharma, V. Kumar, M.S. Thakur, N. Kumar, R. Bal, B. Singh and U. Sharma, Catal. Sci. Technol., 7, 2857 (2017); https://doi.org/10.1039/c7cy00832e
References
T.T.V. Phan, D.T. Phan, X.T. Cao, T.C. Huynh and J. Oh, Nanomaterials, 11, 273 (2021); https://doi.org/10.3390/nano11020273
N. Baig, I. Kammakakam and W. Falath, Mater. Adv., 2, 1821 (2021); https://doi.org/10.1039/d0ma00807a
M. Rafique, A.J. Shaikh, R. Rasheed, M. Tahir, H.F. Bakhat, M. Rafique and F. Rabbani, Nano, 12, 1750043 (2017); https://doi.org/10.1142/s1793292017500436
T.T.B. Quyen, N.N.T. My, D.T.T. Ngan, D.T. Pham and D.V.H. Thien, Mongolian J. Chem., 22, 31 (2021); https://doi.org/10.5564/mjc.v22i48.1564
N.A. Saad,, M.H. Dar, E. Ramya, S.R.G. Naraharisetty and D.N. Rao, J. Mater. Sci., 54, 188 (2018); https://doi.org/10.1007/s10853-018-2811-5
M. P. Nikolova and M.S. Chavali, Biomimetics, 5, 27 (2020); https://doi.org/10.3390/biomimetics5020027
G. Borkow and J. Gabbay, Curr. Chem. Biol., 3, 272 (2009); https://doi.org/10.2174/187231309789054887
B. Sharma, P. Malik and P. Jain, Mater. Today Commun., 16, 353 (2018); https://doi.org/10.1016/j.mtcomm.2018.07.004
G.L. Vanti, S. Masaphy, M.M. Kurjogi, S.V. Chakrasali and V.B. Nargund, Int. J. Biol. Macromol., 156, 1387 (2020); https://doi.org/10.1016/j.ijbiomac.2019.11.179
A.Z. Hameed, S.A. Raj, J. Kandasamy, M.A. Baghdadi and M.A. Shahzad, Polymers, 14, 2335 (2022); https://doi.org/10.3390/polym14122335
A. M. Muthukrishnan, J. Nanomed. Nanotechnol., 6, 251 (2015); https://doi.org/10.4172/2157-7439.1000251
M.M. Jaworska and G.A. Roberts, Chem. Process Eng., 37, 261 (2016); http://dx.doi.org/10.1515/cpe-2016-0021
C.P. Jiménez-Gómez and J.A. Cecili, Molecules, 25, 3981 (2020); https://doi.org/10.3390/molecules25173981
B. Geng, Z. Jin, T. Li and X. Qi, Sci. Total Environ., 407, 4994 (2009); https://doi.org/10.1016/j.scitotenv.2009.05.051
E. Tabesh, H. Salimijazi, M. Kharaziha, M. Mahmoudi and M. Hejazi, Surf. Coat. Technol., 364, 239 (2019); https://doi.org/10.1016/j.surfcoat.2019.02.040
T. Jayaramudu, K. Varaprasad, R.D. Pyarasani, K.R. Reddy, K.D. Kumar, A. Akbari-Fakhrabadi, R.V. Mangalaraja and A. John, Int. J. Biol. Macromol., 128, 499 (2019); https://doi.org/10.1016/j.ijbiomac.2019.01.145
N. Ali, Awais, T. Kamal, M. Ul-Islam, A. Khan, S.A.A. Shah and A. Zada, Int. J. Biol. Macromol., 111, 832 (2018); https://doi.org/10.1016/j.ijbiomac.2018.01.092
N.M. Zain, A.G.F. Stapley and G. Shama, Carbohydr. Polym., 112, 195 (2014); https://doi.org/10.1016/j.carbpol.2014.05.081
M. Usman, N.A. Ibrahim, K. Shameli, N. Zainuddin and W.M.Z.W. Yunus, Molecules, 17, 14928 (2012); https://doi.org/10.3390/molecules171214928
K. Tokarek, J.L. Hueso, P. Kustrowski, G. Stochel and A. Kyziol, Eur. J. Inorg. Chem., 2013, 4940 (2013); https://doi.org/10.1002/ejic.201300594
E. M. Bakhsh, F. Ali, S. B. Khan, H. M. Marwani, E. Y. Danish, A. M. Asiri, Int. J. Biol. Macromol., 131, 666 (2019); https://doi.org/10.1016/j.ijbiomac.2019.03.095
S. Chandra, A. Kumar and P.K. Tomar, J. Saudi Chem. Soc., 18, 149 (2014); https://doi.org/10.1016/j.jscs.2011.06.009
A. Pal, S. Shah and S. Devi, Mater. Chem. Phys., 114, 530 (2009); https://doi.org/10.1016/j.matchemphys.2008.11.056
M.C. Crisan, M. Teodora and M. Lucian, Appl. Sci., 12, 141 (2021); https://doi.org/10.3390/app12010141
J. Quinson, S. Neumann, L. Kacenauskaite, J.J.K. Kirkensgaard, J. Bucher, S.B. Simonsen, L.T. Kuhn, A. Zana, T. Vosch, M. Oezaslan, S. Kunz and M. Arenz, Chem. Eur. J., 26, 9012 (2020); https://doi.org/10.1002/chem.202001553
M. Prause, H. Schulz and D. Wagler, Acta Biotechnol., 4, 143 (1984); https://doi.org/10.1002/abio.370040210
M.B. Kumar, React. Funct. Polym., 46, 1 (2000); https://doi.org/10.1016/s1381-5148(00)00038-9
H.E. Knidri, R. Belaabed, A. Addaou, A. Laajeb and A. Lahsini, Int. J. Biol. Macromol., 120, 1181 (2018); https://doi.org/10.1016/j.ijbiomac.2018.08.139
S. Ayyappan, R. Gopalan, G. N. Subbanna and C.N.R. Rao, J. Mater. Res., 12, 398 (1997); https://doi.org/10.1557/jmr.1997.0057
H.J. Hah, S.M. Koo and S.H. Lee, J. Sol-Gel Sci. Technol., 26, 467 (2003); https://doi.org/10.1023/A:1020710307359
B. Kodasi, R.R. Kamble, J. Manjanna, S.R. Hoolageri, L. Bheemayya, V.B. Nadoni, P.K. Bayannavar, S. Dixit, S.K. Vootla and V.M. Kumbar, J. Trace Elem. Miner., 3, 100044 (2023); https://doi.org/10.1016/j.jtemin.2022.100044
N. Zayyoun, L. Bahmad, L. Laânab and B. Jaber, Appl. Phys. A, 122, 488 (2016); https://doi.org/10.1007/s00339-016-0024-9
D. Verma, R. Malik, J. Meena and R. Rameshwari, J. Appl. Nat. Sci., 13, 544 (2021); https://doi.org/10.31018/jans.v13i2.2635
Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou and M. Tao, Mater. Sci. Poland, 28, 467 (2010).
S. M. Butte and S. A. Waghuley, AIP Conf. Proc., 2220, 020093 (2020); https://doi.org/10.1063/5.0001644
S.S. Sawant, A.D. Bhagwat and C.M. Mahajan, J. Nano-Electron. Phys., 8, 01035 (2016); https://essuir.sumdu.edu.ua/handle/123456789/44869
A. Rezaie, M. Montazer and M.M. Rad, Fibers Polym., 18, 1269 (2017); https://doi.org/10.1007/s12221-017-7263-z
J.M. Prajapati, D. Das, S. Katlakunta, N. Maramu, V. Ranjan and S. Mallick, Inorg. Chim. Acta, 515, 120069 (2021); https://doi.org/10.1016/j.ica.2020.120069
A. Yang, S.-P. Li, Y. Wang, L. Y. Wang, X. Bao and R. Yang, Trans. Nonferrous Met. Soc. China, 25, 3643 (2015); https://doi.org/10.1016/s1003-6326(15)64005-5
A. Oral, E. Mensur, M. Aslan, E. Basaran, Mater. Chem. Phys., 83, 140 (2004); https://doi.org/10.1016/j.matchemphys.2003.09.015
J. Shu, Z. Wang, Y. Huang, N. Huang, C. Ren and W. Zhang, J. Alloys Compds., 633, 338 (2015); https://doi.org/10.1016/j.jallcom.2015.02.048
T.U. Rahman, H. Roy, A.Z. Shoronika, A. Fariha, M. Hasan, M.S. Islam, H.M. Marwani, A. Islam, M.M. Hasan, A.K. Alsukaibi, M.M. Rahman and M.R. Awual, J. Mol. Liq., 388, 122764 (2023); https://doi.org/10.1016/j.molliq.2023.122764
B.A. Koiki and O.A. Arotiba, RSC Adv., 10, 36514 (2020); https://doi.org/10.1039/d0ra06858f
E. M. Dahmane, M. Taourirte, N. Eladlani and M. Rhazi, Int. J. Polym. Anal. Characteriz., 19, 342 (2014); https://doi.org/10.1080/1023666x.2014.902577
J. Chen, P. Zhou, J.-L. Li and S. Li, Carbohydr. Polym., 67, 623 (2007); https://doi.org/10.1016/j.carbpol.2006.07.003
M. Rinaudo, Progr. Polym. Sci., 31, 603 (2006); https://doi.org/10.1016/j.progpolymsci.2006.06.001
B. Fatima, eds.: M. Khan, G.M. do Nascimento and M. El-Azazy, Quantitative Analysis by IR: Determination of Chitin/Chitosan DD, In: Modern Spectroscopic Techniques and Applications, IntechOpen eBooks (2020); https://doi.org/10.5772/intechopen.89708
J. Wang, W. Xiao, H. Teng, H.-M. Yin, X. Chen, J. Xianjing, C. Huo, M. Teng, S. Ma and A.A.N.M. Al-Haimi, Environ. Technol., 41, 2157 (2020); https://doi.org/10.1080/09593330.2018.1556740
Z. Li, Y. Zhang, H. Yu and H. Zhao, Ceram. Int., 48, 4066 (2022); https://doi.org/10.1016/j.ceramint.2021.10.196
A. El-Shaer, W. Ismail and M. Abdelfatah, Mater. Res. Bull., 116, 111 (2019); https://doi.org/10.1016/j.materresbull.2019.04.005
S. Kapoor, N. Goel and S. Singhal, Mater. Today: Proc. 14(Part 2), 445 (2019); https://doi.org/10.1016/j.matpr.2019.04.167
H. Lahmar, F. Setifi, A. Azizi, G. Schmerber and A. Dinia, J. Alloys Compds., 718, 36 (2017); https://doi.org/10.1016/j.jallcom.2017.05.054
Y. Xu, K.M. Kim, M.A. Hanna and D. Nag, Ind. Crops Prod., 21, 185 (2005); https://doi.org/10.1016/j.indcrop.2004.03.002
M. Kaya, T. Baran, A. Mentes, M. Asaroglu, G. Sezen and K.Ö. Tozak, Food Biophys., 9, 145 (2014); https://doi.org/10.1007/s11483-013-9327-y
T.T.V. Phan, G. Hoang, V.T. Nguyen, T.P. Nguyen, H.H. Kim, S. Mondal, P. Manivasagan, M.S. Moorthy, K.D. Lee and O. Junghwan, Carbohydr. Polym., 205, 340 (2019); https://doi.org/10.1016/j.carbpol.2018.10.062
L. Chen, Y. Zhang, R. Sun, F. Zhou, W. Zeng, D. Lu and C.-P. Wong, Sci. Rep., 5, 9672 (2015); https://doi.org/10.1038/srep09672
T. Abiraman and S. Balasubramanian, Ind. Eng. Chem. Res., 56, 1498 (2017); https://doi.org/10.1021/acs.iecr.6b04692
M. Sportelli, A. Volpe, R. Picca, A. Trapani, C. Palazzo, A. Ancona, P. Lugarà, G. Trapani and N. Cioffi, Nanomaterials, 7, 6 (2017); https://doi.org/10.3390/nano7010006
P.V.F. De Sousa, A.F. De Oliveira, A.A. Da Silva and R.P. Lopes, Environ. Sci. Pollut. Res. Int., 26, 14883 (2019); https://doi.org/10.1007/s11356-019-04989-3
M. Kumar, V. Bhatt, O.S. Nayal, S. Sharma, V. Kumar, M.S. Thakur, N. Kumar, R. Bal, B. Singh and U. Sharma, Catal. Sci. Technol., 7, 2857 (2017); https://doi.org/10.1039/c7cy00832e