Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical Study on Surfactant Adsorption of Glycine Betaine on Gas-Liquid Interface
Corresponding Author(s) : Xiaomin Sun
Asian Journal of Chemistry,
Vol. 26 No. 22 (2014): Vol 26 Issue 22
Abstract
Glycine betaine is known as an excellent surfactant and osmolyte from organisms. To investigate the mechanism of glycine betaine, dodecyl hydroxypropyl sulfo betaine is chosen as an example to simulate its adsorption with water on gas-liquid interface by quantum chemistry. With the methods of B3LYP, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are figured out and we find that LUMO of dodecyl hydroxypropyl sulfo betaine is more likely to gather to the positive charge center. Information of hydrogen bonds, charge change and bonding energy are listed, with the suggestion that number and postion of water impacts adsorption obviously.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Sakamoto and N. Murata, Plant Cell Environ., 25, 163 (2002); doi:10.1046/j.0016-8025.2001.00790.x.
- P. Yancey, M. Clark, S. Hand, R. Bowlus and G. Somero, Science, 217, 1214 (1982); doi:10.1126/science.7112124.
- I. Degtyarenko, K.J. Jalkanen, A.A. Gurtovenko and R.M. Nieminen, J. Comput. Theor. Nanosci., 5, 277 (2008); doi:10.1166/jctn.2008.003.
- R. Ahmad, C.J. Lim and S.-Y. Kwon, Plant Biotechnol. Rep., 7, 49 (2013); doi:10.1007/s11816-012-0266-8.
- H.J. Bohnert, D.E. Nelson and R.G. Jensen, Plant Cell, 7, 1099 (1995); doi:10.1105/tpc.7.7.1099.
- D. Rhodes and A.D. Hanson, Annu. Rev. Plant Physiol. Plant Mol. Biol., 44, 357 (1993); doi:10.1146/annurev.pp.44.060193.002041.
- T.H. Chen and N. Murata, Trends Plant Sci., 13, 499 (2008); doi:10.1016/j.tplants.2008.06.007.
- T.H. Chen and N. Murata, Plant Cell Environ., 34, 1 (2011); doi:10.1111/j.1365-3040.2010.02232.x.
- E.-J. Park, Z. Jeknic´, T.H.H. Chen and N. Murata, Plant Biotechnol. J., 5, 422 (2007a); doi:10.1111/j.1467-7652.2007.00251.x.
- N. Von Weymarn, A. Nyyssola, T. Reinikainen, M. Leisola and H. Ojamo, Appl. Microbiol. Biotechnol., 55, 214 (2001); doi:10.1007/s002530000515.
- T. van der Heide and B. Poolman, J. Bacteriol., 182, 203 (2000); doi:10.1128/JB.182.1.203-206.2000.
- E.S. Courtenay, M.W. Capp, C.F. Anderson and M.T. Record, Biochemistry, 39, 4455 (2000); doi:10.1021/bi992887l.
- A. Di Michele, M. Freda, G. Onori, M. Paolantoni, A. Santucci and P. Sassi, J. Phys. Chem. B, 110, 21077 (2006); doi:10.1021/jp068055w.
- H.J.V. Tyrrell and M. Kennerley, J. Chem. Soc. A, 2724 (1968); doi:10.1039/j19680002724.
- M. Civera, A. Fornili, M. Sironi and S.L. Fornili, Chem. Phys. Lett., 367, 238 (2003); doi:10.1016/S0009-2614(02)01707-4.
- S. Venkatesan and S.-L. Lee, J. Mol. Model., 18, 5017 (2012); doi:10.1007/s00894-012-1501-5.
- P.P. Misra and N. Kishore, J. Chem. Thermodyn., 54, 453 (2012); doi:10.1016/j.jct.2012.05.031.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, J.A. Pople et al., Gaussian 03, Revision B. 03. Gaussian, Inc, Pittsburgh PA (2003).
References
A. Sakamoto and N. Murata, Plant Cell Environ., 25, 163 (2002); doi:10.1046/j.0016-8025.2001.00790.x.
P. Yancey, M. Clark, S. Hand, R. Bowlus and G. Somero, Science, 217, 1214 (1982); doi:10.1126/science.7112124.
I. Degtyarenko, K.J. Jalkanen, A.A. Gurtovenko and R.M. Nieminen, J. Comput. Theor. Nanosci., 5, 277 (2008); doi:10.1166/jctn.2008.003.
R. Ahmad, C.J. Lim and S.-Y. Kwon, Plant Biotechnol. Rep., 7, 49 (2013); doi:10.1007/s11816-012-0266-8.
H.J. Bohnert, D.E. Nelson and R.G. Jensen, Plant Cell, 7, 1099 (1995); doi:10.1105/tpc.7.7.1099.
D. Rhodes and A.D. Hanson, Annu. Rev. Plant Physiol. Plant Mol. Biol., 44, 357 (1993); doi:10.1146/annurev.pp.44.060193.002041.
T.H. Chen and N. Murata, Trends Plant Sci., 13, 499 (2008); doi:10.1016/j.tplants.2008.06.007.
T.H. Chen and N. Murata, Plant Cell Environ., 34, 1 (2011); doi:10.1111/j.1365-3040.2010.02232.x.
E.-J. Park, Z. Jeknic´, T.H.H. Chen and N. Murata, Plant Biotechnol. J., 5, 422 (2007a); doi:10.1111/j.1467-7652.2007.00251.x.
N. Von Weymarn, A. Nyyssola, T. Reinikainen, M. Leisola and H. Ojamo, Appl. Microbiol. Biotechnol., 55, 214 (2001); doi:10.1007/s002530000515.
T. van der Heide and B. Poolman, J. Bacteriol., 182, 203 (2000); doi:10.1128/JB.182.1.203-206.2000.
E.S. Courtenay, M.W. Capp, C.F. Anderson and M.T. Record, Biochemistry, 39, 4455 (2000); doi:10.1021/bi992887l.
A. Di Michele, M. Freda, G. Onori, M. Paolantoni, A. Santucci and P. Sassi, J. Phys. Chem. B, 110, 21077 (2006); doi:10.1021/jp068055w.
H.J.V. Tyrrell and M. Kennerley, J. Chem. Soc. A, 2724 (1968); doi:10.1039/j19680002724.
M. Civera, A. Fornili, M. Sironi and S.L. Fornili, Chem. Phys. Lett., 367, 238 (2003); doi:10.1016/S0009-2614(02)01707-4.
S. Venkatesan and S.-L. Lee, J. Mol. Model., 18, 5017 (2012); doi:10.1007/s00894-012-1501-5.
P.P. Misra and N. Kishore, J. Chem. Thermodyn., 54, 453 (2012); doi:10.1016/j.jct.2012.05.031.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, J.A. Pople et al., Gaussian 03, Revision B. 03. Gaussian, Inc, Pittsburgh PA (2003).