Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Al-Doping on Electrochemical Performance of LiMn2O4
Corresponding Author(s) : Xinghua Liang
Asian Journal of Chemistry,
Vol. 26 No. 22 (2014): Vol 26 Issue 22
Abstract
Spinel LiMn2O4 and LiAlXMn2-XO4(GX, X = 0, 1, 2, 3, 4) have been synthesized by solid-state method. The synthesized samples were characterized by following methods: X-ray diffraction, scanning electron microscopy. Results showed that LiAl0.3Mn1.7O4(G3) was spinel structure which space group was Fd3m. The spinous substances were not observed on its spherical-structured surface. Experimental battery EX(X = 0, 0.1, 0.2, 0.3, 0.4) was assembled by using GX as cathode electrode, active carbon as conductive agent and Li plate as the anode electrode. The EX(X = 0, 0.1, 0.2, 0.3, 0.4) was characterized by electrochemical impedance spectroscopy, cyclic voltammetry and charge-discharge studies. Results indicated that Al-substitution decreased the internal resistance of EX. Charge-discharge cycling studies and cyclic voltammetry test showed that Al-substitution substantially improved the capacity retention of the EX.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.-J. Hong, I.-S. Park, T. Ryu, J. Ryu, B.-G. Kim and K.-S. Chung, Chem. Eng. J., 234, 16 (2013); doi:10.1016/j.cej.2013.08.060.
- C. Chae, H. Park, D. Kim, J. Kim, E.-S. Oh and J.K. Lee, J. Power Sources, 244, 214 (2013); doi:10.1016/j.jpowsour.2013.01.157.
- J.-W. Lee, J.-I. Kim and K.C. Roh, Solid State Sci., 14, 1251 (2012); doi:10.1016/j.solidstatesciences.2012.07.017.
- M.M. Joglekar and N. Ramakrishnan, J. Power Sources, 230, 143 (2013); doi:10.1016/j.jpowsour.2012.12.060.
- J.L. Wang, Z.H. Li, J. Yang, J.J. Tang, J.J. Yu, W.B. Nie, G.T. Lei and Q.Z. Xiao, Electrochim. Acta, 75, 115 (2012); doi:10.1016/j.electacta.2012.04.136.
- S.T. Myung, S. Komaba, N. Hirosaki and N. Kumagai, Electrochem. Commun., 4, 397 (2002); doi:10.1016/S1388-2481(02)00313-2.
- S. Komaba, N. Kumagai, T. Sasaki and Y. Miki, Electrochemistry, 69, 784 (2001).
- H. Sahan, H. Goktepe, S. Patat and A. Ulgen, Solid State Ion., 181, 1437 (2010); doi:10.1016/j.ssi.2010.08.008.
- H. Sahan, H. Goktepe and S. Patat, J. Mater. Sci. Technol., 27, 415 (2011); doi:10.1016/S1005-0302(11)60084-4.
- D. Arumugam and G.P. Kalaignan, Electrochim. Acta, 55, 8709 (2010); doi:10.1016/j.electacta.2010.08.016.
- N. Krins, F. Hatert, K. Traina, L. Dusoulier, I. Molenberg, J.F. Fagnard, Ph. Vanderbemden, A. Rulmont, R. Cloots and B. Vertruyen, Solid State Ion., 177, 1033 (2006); doi:10.1016/j.ssi.2006.04.001.
- Q.-H. Wu, J.-M. Xu, Q.-C. Zhuang and S.-G. Sun, Solid State Ion., 177, 1483 (2006); doi:10.1016/j.ssi.2006.06.020.
- C. Wu, F. Wu, L. Chen and X. Huang, Solid State Ion., 152-153, 335 (2002); doi:10.1016/S0167-2738(02)00328-4.
- G.X. Wang, D.H. Bradhurst, H.K. Liu and S.X. Dou, Solid State Ion., 120, 95 (1999); doi:10.1016/S0167-2738(98)00554-2.
- R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, C.W. Dunnill and D.H. Gregory, Mater. Res. Bull., 43, 2119 (2008); doi:10.1016/j.materresbull.2007.09.021.
- R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, C.W. Dunnill and D.H. Gregory, J. Phys. Chem. Solids, 69, 2082 (2008); doi:10.1016/j.jpcs.2008.03.009.
- J.L. Wang, Z.H. Li, J. Yang, J.J. Tang, J.J. Yu, W.B. Nie, G.T. Lei and Q.Z. Xiao, Electrochim. Acta, 75, 115 (2012); doi:10.1016/j.electacta.2012.04.136.
- J.-F. Lee, Y.-W. Tsai, R. Santhanam, B.J. Hwang, M.-H. Yang and D.-G. Liu, J. Power Sources, 119-121, 721 (2003); doi:10.1016/S0378-7753(03)00210-6.
References
H.-J. Hong, I.-S. Park, T. Ryu, J. Ryu, B.-G. Kim and K.-S. Chung, Chem. Eng. J., 234, 16 (2013); doi:10.1016/j.cej.2013.08.060.
C. Chae, H. Park, D. Kim, J. Kim, E.-S. Oh and J.K. Lee, J. Power Sources, 244, 214 (2013); doi:10.1016/j.jpowsour.2013.01.157.
J.-W. Lee, J.-I. Kim and K.C. Roh, Solid State Sci., 14, 1251 (2012); doi:10.1016/j.solidstatesciences.2012.07.017.
M.M. Joglekar and N. Ramakrishnan, J. Power Sources, 230, 143 (2013); doi:10.1016/j.jpowsour.2012.12.060.
J.L. Wang, Z.H. Li, J. Yang, J.J. Tang, J.J. Yu, W.B. Nie, G.T. Lei and Q.Z. Xiao, Electrochim. Acta, 75, 115 (2012); doi:10.1016/j.electacta.2012.04.136.
S.T. Myung, S. Komaba, N. Hirosaki and N. Kumagai, Electrochem. Commun., 4, 397 (2002); doi:10.1016/S1388-2481(02)00313-2.
S. Komaba, N. Kumagai, T. Sasaki and Y. Miki, Electrochemistry, 69, 784 (2001).
H. Sahan, H. Goktepe, S. Patat and A. Ulgen, Solid State Ion., 181, 1437 (2010); doi:10.1016/j.ssi.2010.08.008.
H. Sahan, H. Goktepe and S. Patat, J. Mater. Sci. Technol., 27, 415 (2011); doi:10.1016/S1005-0302(11)60084-4.
D. Arumugam and G.P. Kalaignan, Electrochim. Acta, 55, 8709 (2010); doi:10.1016/j.electacta.2010.08.016.
N. Krins, F. Hatert, K. Traina, L. Dusoulier, I. Molenberg, J.F. Fagnard, Ph. Vanderbemden, A. Rulmont, R. Cloots and B. Vertruyen, Solid State Ion., 177, 1033 (2006); doi:10.1016/j.ssi.2006.04.001.
Q.-H. Wu, J.-M. Xu, Q.-C. Zhuang and S.-G. Sun, Solid State Ion., 177, 1483 (2006); doi:10.1016/j.ssi.2006.06.020.
C. Wu, F. Wu, L. Chen and X. Huang, Solid State Ion., 152-153, 335 (2002); doi:10.1016/S0167-2738(02)00328-4.
G.X. Wang, D.H. Bradhurst, H.K. Liu and S.X. Dou, Solid State Ion., 120, 95 (1999); doi:10.1016/S0167-2738(98)00554-2.
R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, C.W. Dunnill and D.H. Gregory, Mater. Res. Bull., 43, 2119 (2008); doi:10.1016/j.materresbull.2007.09.021.
R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, C.W. Dunnill and D.H. Gregory, J. Phys. Chem. Solids, 69, 2082 (2008); doi:10.1016/j.jpcs.2008.03.009.
J.L. Wang, Z.H. Li, J. Yang, J.J. Tang, J.J. Yu, W.B. Nie, G.T. Lei and Q.Z. Xiao, Electrochim. Acta, 75, 115 (2012); doi:10.1016/j.electacta.2012.04.136.
J.-F. Lee, Y.-W. Tsai, R. Santhanam, B.J. Hwang, M.-H. Yang and D.-G. Liu, J. Power Sources, 119-121, 721 (2003); doi:10.1016/S0378-7753(03)00210-6.