Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Molecular Orbital Study of Flouroaryl Substituted Amino-Borane Dimers: Geometry, Energetics and Reactivity
Corresponding Author(s) : H.C. Tandon
Asian Journal of Chemistry,
Vol. 31 No. 8 (2019): Vol 31 Issue 8
Abstract
The electronic properties in terms of HOMO-LUMO energy, electronegativity, hardness and electrophilicity index have been calculated and discussed in the framework of Unrestricted Hartee-Fock (UHF), semi-emperical parametric method (PM3) for six fluoro-substituted aminoborane dimers, viz. [Me2B-μ-N(H)ArF]2 (Ar: 4-C6H4F (1), 2-C6H5F (2); 3,5-C6H3F2 (3); 2,3,4,5-C6HF4 (4); 2,3,5,6-C6HF4 (5) and C6F5 (6)). The calculated parameters mentioned above have been compared with the available experimental and other theoretical estimates. The results are in excellent agreement with the reported estimates. The geometrical parameters calculated are also in good agreement with available experimental and theoretical values. The chemical reactivity is also discussed in terms of electrophilicity index (ω) values.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.A. Khalili, P.B. Hitchcock and J.D. Smith, J. Chem. Soc., Dalton Trans., 1206 (1979); https://doi.org/10.1039/DT9790001206.
- A.-A.I. Al-Wassil, P.B. Hitchcock, S. Sarisaban, J.D. Smith and C.L. Wilson, J. Chem. Soc., Dalton Trans., 1929 (1985); https://doi.org/10.1039/DT9850001929.
- K.M. Waggoner and P.P. Power, J. Am. Chem. Soc., 113, 3385 (1991); https://doi.org/10.1021/ja00009a025.
- F.C. Sauls and L.V. Interrante, Coord. Chem. Rev., 128, 193 (1993); https://doi.org/10.1016/0010-8545(93)80030-9.
- J.C. Gordon, P. Shukla, A.H. Cowley, J.N. Jones, D.W. Keogh and B.L. Scott, Chem. Commun., 2710 (2002); https://doi.org/10.1039/B203693B.
- S.D. Ittel, L.K. Johnson and M. Brookhart, Chem. Rev., 100, 1169 (2002); https://doi.org/10.1021/cr9804644.
- N.J. Hardman, B.F. Eicher and P.P. Power, Chem. Commun., 1991 (2000); https://doi.org/10.1039/B005686N.
- C. Cui, H.W. Roesky, H.-G. Schmidt, M. Noltemeyer, H. Hao and F. Cimpoesu, Angew. Chem. Int. Ed. Engl., 39, 4274 (2000); https://doi.org/10.1002/1521-3773(20001201)39:23<4274::AIDANIE4274>3.0.CO;2-K.
- L. Johansson and M. Tilset, J. Am. Chem. Soc., 123, 739 (2001); https://doi.org/10.1021/ja002505v.
- H.T. Dieck, M. Suoboda and T. Grieser, Z. Naturforsch. B, 36, 823 (1981); https://doi.org/10.1515/znb-1981-0709.
- A. Solladié-Cavallo, M. Bencheqroun and F. Bonne, Synth. Commun., 23, 1683 (1993); https://doi.org/10.1080/00397919308011266.
- P. Shukla, A.H. Cowley, J.N. Jones, J.C. Gordon and B.L. Scott, Dalton Trans., 1019 (2005); https://doi.org/10.1039/b417652a.
- H.C. Tandon and Asha Tandon, J. Indian Chem. Soc., 83, 151 (2006).
- J.J.P. Stewart, J. Comput. Chem., 10, 221 (1989); https://doi.org/10.1002/jcc.540100209.
- A.R. Leach, Moulecular Modelling, Longman: Essex (1997).
- I.N. Levine, Quantum Chemistry, Prentice Hall: New Jersey (2000).
- Hyperchem. 7.5 Version, Hypercube Inc. Florida (2003).
- V. Jonas and G. Frenking, J. Chem. Soc. Chem. Commun., 12, 1489 (1994); https://doi.org/10.1039/C39940001489.
- K. Fukui, Science, 218, 747 (1982); https://doi.org/10.1126/science.218.4574.747.
- R.G. Pearson, J. Org. Chem., 54, 1423 (1989); https://doi.org/10.1021/jo00267a034.
- Z. Zhou and R.G. Parr, J. Am. Chem. Soc., 111, 7371 (1989); https://doi.org/10.1021/ja00201a014.
- F. Carey and R. Sundberg, Advanced Organic Chemistry: Structure and Mechanism, Plenum Press: New York, edn 3 (1993).
- T.H. Lowry and K.S. Richardson, Mechanism and Theory in Organic Chemistry, Marpen Collins: New York, edn 3 (1987).
- J. March, Advanced Organic Chemistry: Reactions, Mechanism and Structure, John Wiley: New York, edn 4 (1992).
- I.L. Finar, Organic Chemistry: The Fundamental Principle, English Language Book Society: London, edn 7 (2013).
- A.T. Maynard, M. Huang, W.G. Rice and D.G. Covell, Proc. Natl. Acad. Sci. USA, 95, 11578 (1998); https://doi.org/10.1073/pnas.95.20.11578.
- R.G. Parr, L.V. Szentpaly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x.
- R.G. Pearson, Chemical Hardness-Applications from Molecules to Solids, (VCH-Wiley: Weinhein (1997).
- P.K. Chattaraj, H. Lee and R.G. Parr, J. Am. Chem. Soc., 113, 1855 (1991); https://doi.org/10.1021/ja00005a073.
- Z. Zhou and R.G. Parr, J. Am. Chem. Soc., 112, 5720 (1990); https://doi.org/10.1021/ja00171a007.
References
S.A. Khalili, P.B. Hitchcock and J.D. Smith, J. Chem. Soc., Dalton Trans., 1206 (1979); https://doi.org/10.1039/DT9790001206.
A.-A.I. Al-Wassil, P.B. Hitchcock, S. Sarisaban, J.D. Smith and C.L. Wilson, J. Chem. Soc., Dalton Trans., 1929 (1985); https://doi.org/10.1039/DT9850001929.
K.M. Waggoner and P.P. Power, J. Am. Chem. Soc., 113, 3385 (1991); https://doi.org/10.1021/ja00009a025.
F.C. Sauls and L.V. Interrante, Coord. Chem. Rev., 128, 193 (1993); https://doi.org/10.1016/0010-8545(93)80030-9.
J.C. Gordon, P. Shukla, A.H. Cowley, J.N. Jones, D.W. Keogh and B.L. Scott, Chem. Commun., 2710 (2002); https://doi.org/10.1039/B203693B.
S.D. Ittel, L.K. Johnson and M. Brookhart, Chem. Rev., 100, 1169 (2002); https://doi.org/10.1021/cr9804644.
N.J. Hardman, B.F. Eicher and P.P. Power, Chem. Commun., 1991 (2000); https://doi.org/10.1039/B005686N.
C. Cui, H.W. Roesky, H.-G. Schmidt, M. Noltemeyer, H. Hao and F. Cimpoesu, Angew. Chem. Int. Ed. Engl., 39, 4274 (2000); https://doi.org/10.1002/1521-3773(20001201)39:23<4274::AIDANIE4274>3.0.CO;2-K.
L. Johansson and M. Tilset, J. Am. Chem. Soc., 123, 739 (2001); https://doi.org/10.1021/ja002505v.
H.T. Dieck, M. Suoboda and T. Grieser, Z. Naturforsch. B, 36, 823 (1981); https://doi.org/10.1515/znb-1981-0709.
A. Solladié-Cavallo, M. Bencheqroun and F. Bonne, Synth. Commun., 23, 1683 (1993); https://doi.org/10.1080/00397919308011266.
P. Shukla, A.H. Cowley, J.N. Jones, J.C. Gordon and B.L. Scott, Dalton Trans., 1019 (2005); https://doi.org/10.1039/b417652a.
H.C. Tandon and Asha Tandon, J. Indian Chem. Soc., 83, 151 (2006).
J.J.P. Stewart, J. Comput. Chem., 10, 221 (1989); https://doi.org/10.1002/jcc.540100209.
A.R. Leach, Moulecular Modelling, Longman: Essex (1997).
I.N. Levine, Quantum Chemistry, Prentice Hall: New Jersey (2000).
Hyperchem. 7.5 Version, Hypercube Inc. Florida (2003).
V. Jonas and G. Frenking, J. Chem. Soc. Chem. Commun., 12, 1489 (1994); https://doi.org/10.1039/C39940001489.
K. Fukui, Science, 218, 747 (1982); https://doi.org/10.1126/science.218.4574.747.
R.G. Pearson, J. Org. Chem., 54, 1423 (1989); https://doi.org/10.1021/jo00267a034.
Z. Zhou and R.G. Parr, J. Am. Chem. Soc., 111, 7371 (1989); https://doi.org/10.1021/ja00201a014.
F. Carey and R. Sundberg, Advanced Organic Chemistry: Structure and Mechanism, Plenum Press: New York, edn 3 (1993).
T.H. Lowry and K.S. Richardson, Mechanism and Theory in Organic Chemistry, Marpen Collins: New York, edn 3 (1987).
J. March, Advanced Organic Chemistry: Reactions, Mechanism and Structure, John Wiley: New York, edn 4 (1992).
I.L. Finar, Organic Chemistry: The Fundamental Principle, English Language Book Society: London, edn 7 (2013).
A.T. Maynard, M. Huang, W.G. Rice and D.G. Covell, Proc. Natl. Acad. Sci. USA, 95, 11578 (1998); https://doi.org/10.1073/pnas.95.20.11578.
R.G. Parr, L.V. Szentpaly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x.
R.G. Pearson, Chemical Hardness-Applications from Molecules to Solids, (VCH-Wiley: Weinhein (1997).
P.K. Chattaraj, H. Lee and R.G. Parr, J. Am. Chem. Soc., 113, 1855 (1991); https://doi.org/10.1021/ja00005a073.
Z. Zhou and R.G. Parr, J. Am. Chem. Soc., 112, 5720 (1990); https://doi.org/10.1021/ja00171a007.