Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structure, Vibrations, Molecular Orbitals, Reactivity Properties of 3-Trifluoromethylphenylchloroformate by FT-IR, FT-Raman, FT-NMR and DFT Studies
Corresponding Author(s) : V. Arjunan
Asian Journal of Chemistry,
Vol. 31 No. 8 (2019): Vol 31 Issue 8
Abstract
The geometry of 3-trifluoromethylphenylchloroformate (FMPCF) was optimized with B3LYP method using 6–311++G** and cc–pVTZ basis sets. The molecular structural parameters and thermodynamic properties of the compound have been determined. The vibrational frequencies of the fundamental modes of the compound have been precisely assigned, analyzed and the theoretical results were compared with the experimental data. The energies of important molecular orbitals of the compound are also evaluated from DFT method. The Frontier orbital energy gap (ELUMO–EHOMO) is found to be 6.2143 eV. The extreme limits of the electrostatic potential is +8.301e × 10–3 to –8.301e × 10–3 while the total electron density spreads between +3.835e × 10–2 to –3.835e × 10–2. 1H NMR and 13C NMR chemical shifts are measured and compared with their gauge independent atomic orbital (GIAO) calculated values. The n(O7) →π*(C13–O14) and π(C1–C6) →π*(C2–C3) transitions are best stablized with 48.40 and 21.03 kcal mol–1, respectively. In 3-trifluoromethylphenylchloroformate, the atoms C13 is favourable for electrophilic attack. The atoms C2 and C8 are more favourable for nucleophilic attack. The dual descriptors (Δfk, Δsk and Δωk) revealed that the order of nucleophilic attack is C1 > C4 > C2 > C8 > C5. Thus, the present investigation provides complete structure, vibrations and reactivity characteristics of the compound.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Muller, C. Faeh and F. Diederich, Science, 317, 1881 (2007); https://doi.org/10.1126/science.1131943.
- J.P. Begue and D. Bonnet-Delpon, Sarcolemmal Cardiac KATP Channels as a Target for the Bioorganic and Medicinal Chemistry of Fluorine, Wiley: Hoboken, pp. 72–98 (2008).
- W.K. Hagmann, J. Med. Chem. 51, 4359 (2008); https://doi.org/10.1021/jm800219f.
- P. Kirsch, N-Heterocyclic Carbenes in Transition Metal in Modern Fluoroorganic Chemistry: Synthesis, Reactivity and Applications. Wiley-VCH: Weinheim (2004).
- R.E. Banks, B.E. Smart and J.C. Tatlow, Liquid Crystal, Materioal Design and sElf Assembly in Organofluorine Chemistry: Principles and Commercial Applications, Plenum: New York (1994).
- G.K.S. Prakash and A.K. Yudin, Chem. Rev., 97, 757 (2007); https://doi.org/10.1021/cr9408991.
- G.K.S. Prakash, F. Wang, T. Stewart, T. Mathew and G.A. Olah, Proc. Natl. Acad. Sci. USA, 106, 4090 (2009); https://doi.org/10.1073/pnas.0900179106.
- P. Hohenberg and W. Kohn, Phys. Rev., 136, 864 (1964); https://doi.org/10.1103/PhysRev.136.B864.
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913.
- A.D. Becke, Phys. Rev. A, 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098.
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT (2009).
- J.S. Murray and K. Sen, Molecular Electrostatic Potentials, Concepts and Applications, Elsevier: Amsterdam (1996).
- R.I. Dennington, T. Keith and J. Millam, GaussView, Version 5.0.8, Semichem. Inc, Shawnee Mission, KS (2008).
- G. Keresztury, S. Holly, G. Besenyei, J. Varga, A. Wang and J.R. Durig, Spectrochim. Acta, 49A, 2007 (1993); https://doi.org/10.1016/S0584-8539(09)91012-1.
- R. Ditchfield, J. Chem. Phys., 56, 5688 (1972); https://doi.org/10.1063/1.1677088.
- K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005.
- R.G. Parr and W. Yang, J. Am. Chem. Soc., 106, 4049 (1984); https://doi.org/10.1021/ja00326a036.
- W. Yang and R.G. Parr, Proc. Natl. Acad. Sci. USA, 82, 6723 (1985); https://doi.org/10.1073/pnas.82.20.6723.
- R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press: Oxford (1989).
- G.L. Bryant Jr. and J.A. King Jr., Acta Crystallogr. C, 50, 1106 (1994); https://doi.org/10.1107/S0108270193011084.
- S.-X. Bao, Z. Fang, Y.-L. Wang and P. Wei, Acta Crystallogr. Sect. E Struct. Rep. Online, 65, o1606 (2009); https://doi.org/10.1107/S1600536809022600.
- G. Klopman, J. Am. Chem. Soc., 90, 223 (1968); https://doi.org/10.1021/ja01004a002.
- C.G. Zhan, J.A. Nichols and D.A. Dixon, J. Phys. Chem. A, 107, 4184 (2003); https://doi.org/10.1021/jp0225774.
- A.E. Reed and F. Weinhold, J. Chem. Phys., 83, 1736 (1985); https://doi.org/10.1063/1.449360.
- A.E. Reed, R.B. Weinstock and F. Weinhold, J. Chem. Phys., 83, 735 (1985); https://doi.org/10.1063/1.449486.
- V. Arjunan, L. Devi and S. Mohan, J. Mol. Struct., 1159, 103 (2018); https://doi.org/10.1016/j.molstruc.2018.01.049.
- V. Arjunan, R. Anitha, S. Thenmozhi, M.K. Marchewka and S. Mohan, J. Mol. Struct., 1113, 42 (2016); https://doi.org/10.1016/j.molstruc.2016.02.034.
- G. Varsanyi, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, vol. I, Adam Hilger: London (1974).
- V. Arjunan, R. Anitha and S. Mohan, Chem. Data Coll., 17–18, 143 (2018); https://doi.org/10.1016/j.cdc.2018.08.006.
- V. Arjunan and S. Mohan, J. Mol. Struct., 892, 289 (2008); https://doi.org/10.1016/j.molstruc.2008.05.053.
- J.O. Jensen, A. Banerjee, C.N. Merrow, D. Zeroka and J. Michael Lochner, J. Mol. Struct. THEOCHEM, 531, 323 (2000); https://doi.org/10.1016/S0166-1280(00)00465-6.
- J.O. Jensen and D. Zeroka, J. Mol. Struct. THEOCHEM, 487, 267 (1999); https://doi.org/10.1016/S0166-1280(99)00068-8.
- H.F. Hameka and J.O. Jensen, J. Mol. Struct. THEOCHEM, 331, 203 (1995); https://doi.org/10.1016/0166-1280(94)03888-R.
- V. Arjunan, M. Kalaivani, S. Senthilkumari and S. Mohan, Spectrochim. Acta, 115, 154 (2013); https://doi.org/10.1016/j.saa.2013.06.003.
- H.O. Kalinowski, S. Berger and S. Braun, Carbon–13 NMR Spectroscopy, John Wiley & Sons: Chichester (1988).
- K. Pihlaja and E. Kleinpeter, Carbon–13 Chemical Shifts in Structural and Sterochemical Analysis, VCH, Publishers: Deerfield Beach (1994).
- P.W. Ayers and R.G. Parr, J. Am. Chem. Soc., 122, 2010 (2000); https://doi.org/10.1021/ja9924039.
References
K. Muller, C. Faeh and F. Diederich, Science, 317, 1881 (2007); https://doi.org/10.1126/science.1131943.
J.P. Begue and D. Bonnet-Delpon, Sarcolemmal Cardiac KATP Channels as a Target for the Bioorganic and Medicinal Chemistry of Fluorine, Wiley: Hoboken, pp. 72–98 (2008).
W.K. Hagmann, J. Med. Chem. 51, 4359 (2008); https://doi.org/10.1021/jm800219f.
P. Kirsch, N-Heterocyclic Carbenes in Transition Metal in Modern Fluoroorganic Chemistry: Synthesis, Reactivity and Applications. Wiley-VCH: Weinheim (2004).
R.E. Banks, B.E. Smart and J.C. Tatlow, Liquid Crystal, Materioal Design and sElf Assembly in Organofluorine Chemistry: Principles and Commercial Applications, Plenum: New York (1994).
G.K.S. Prakash and A.K. Yudin, Chem. Rev., 97, 757 (2007); https://doi.org/10.1021/cr9408991.
G.K.S. Prakash, F. Wang, T. Stewart, T. Mathew and G.A. Olah, Proc. Natl. Acad. Sci. USA, 106, 4090 (2009); https://doi.org/10.1073/pnas.0900179106.
P. Hohenberg and W. Kohn, Phys. Rev., 136, 864 (1964); https://doi.org/10.1103/PhysRev.136.B864.
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913.
A.D. Becke, Phys. Rev. A, 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098.
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT (2009).
J.S. Murray and K. Sen, Molecular Electrostatic Potentials, Concepts and Applications, Elsevier: Amsterdam (1996).
R.I. Dennington, T. Keith and J. Millam, GaussView, Version 5.0.8, Semichem. Inc, Shawnee Mission, KS (2008).
G. Keresztury, S. Holly, G. Besenyei, J. Varga, A. Wang and J.R. Durig, Spectrochim. Acta, 49A, 2007 (1993); https://doi.org/10.1016/S0584-8539(09)91012-1.
R. Ditchfield, J. Chem. Phys., 56, 5688 (1972); https://doi.org/10.1063/1.1677088.
K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005.
R.G. Parr and W. Yang, J. Am. Chem. Soc., 106, 4049 (1984); https://doi.org/10.1021/ja00326a036.
W. Yang and R.G. Parr, Proc. Natl. Acad. Sci. USA, 82, 6723 (1985); https://doi.org/10.1073/pnas.82.20.6723.
R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press: Oxford (1989).
G.L. Bryant Jr. and J.A. King Jr., Acta Crystallogr. C, 50, 1106 (1994); https://doi.org/10.1107/S0108270193011084.
S.-X. Bao, Z. Fang, Y.-L. Wang and P. Wei, Acta Crystallogr. Sect. E Struct. Rep. Online, 65, o1606 (2009); https://doi.org/10.1107/S1600536809022600.
G. Klopman, J. Am. Chem. Soc., 90, 223 (1968); https://doi.org/10.1021/ja01004a002.
C.G. Zhan, J.A. Nichols and D.A. Dixon, J. Phys. Chem. A, 107, 4184 (2003); https://doi.org/10.1021/jp0225774.
A.E. Reed and F. Weinhold, J. Chem. Phys., 83, 1736 (1985); https://doi.org/10.1063/1.449360.
A.E. Reed, R.B. Weinstock and F. Weinhold, J. Chem. Phys., 83, 735 (1985); https://doi.org/10.1063/1.449486.
V. Arjunan, L. Devi and S. Mohan, J. Mol. Struct., 1159, 103 (2018); https://doi.org/10.1016/j.molstruc.2018.01.049.
V. Arjunan, R. Anitha, S. Thenmozhi, M.K. Marchewka and S. Mohan, J. Mol. Struct., 1113, 42 (2016); https://doi.org/10.1016/j.molstruc.2016.02.034.
G. Varsanyi, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, vol. I, Adam Hilger: London (1974).
V. Arjunan, R. Anitha and S. Mohan, Chem. Data Coll., 17–18, 143 (2018); https://doi.org/10.1016/j.cdc.2018.08.006.
V. Arjunan and S. Mohan, J. Mol. Struct., 892, 289 (2008); https://doi.org/10.1016/j.molstruc.2008.05.053.
J.O. Jensen, A. Banerjee, C.N. Merrow, D. Zeroka and J. Michael Lochner, J. Mol. Struct. THEOCHEM, 531, 323 (2000); https://doi.org/10.1016/S0166-1280(00)00465-6.
J.O. Jensen and D. Zeroka, J. Mol. Struct. THEOCHEM, 487, 267 (1999); https://doi.org/10.1016/S0166-1280(99)00068-8.
H.F. Hameka and J.O. Jensen, J. Mol. Struct. THEOCHEM, 331, 203 (1995); https://doi.org/10.1016/0166-1280(94)03888-R.
V. Arjunan, M. Kalaivani, S. Senthilkumari and S. Mohan, Spectrochim. Acta, 115, 154 (2013); https://doi.org/10.1016/j.saa.2013.06.003.
H.O. Kalinowski, S. Berger and S. Braun, Carbon–13 NMR Spectroscopy, John Wiley & Sons: Chichester (1988).
K. Pihlaja and E. Kleinpeter, Carbon–13 Chemical Shifts in Structural and Sterochemical Analysis, VCH, Publishers: Deerfield Beach (1994).
P.W. Ayers and R.G. Parr, J. Am. Chem. Soc., 122, 2010 (2000); https://doi.org/10.1021/ja9924039.