Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Spectral, Thermal, Crystal Structure, Hirshfeld Surface Analyses and Biological Activities of New Hydrazinium Dipicolinato Copper(II) Tetrahydrate
Corresponding Author(s) : B.N. Sivasankar
Asian Journal of Chemistry,
Vol. 31 No. 8 (2019): Vol 31 Issue 8
Abstract
A new copper complex of pyridine-2,6-dicarboxylate containing hydrazinium cation, formulated as (N2H5)2[Cu(PDC)2]·4H2O (PDC = pyridine-2,6-dicarboxylate) has been synthesized from copper(II) nitrate, hydrazine hydrate and pyridine-2,6-dicarboxylic acid as a single crystal and characterized by elemental analysis and spectroscopic (IR and UV-visible), thermal (TG/DTG), single crystal X-ray diffraction and biological studies. A six-coordinate complex with a distorted octahedral geometry around Cu(II) ion is proposed and confirmed by X-ray single crystal method. The structure reveals that two pyridine-2,6-dicarboxylate species acting as tridentate ligands and hydrazinium cation present as a counter ion along with non-coordinated four water molecules. The structural units of copper(II) is mutually held by the hydrogen bonds and π···π and C–O···π interactions. The copper(II) complex is connected to one another via O–H···O hydrogen bonds, forming water clusters, which plays an important role in the stabilization of the crystal structure. In the water clusters, the water molecules are trapped by the cooperative association of coordination interactions as well as hydrogen bonds. Both cation and anion interactions and crystal from various types of intermolecular contacts and their importance were explored using Hirshfeld surface analysis. This indicates that O···H/H···O interactions are the superior interactions conforming excessive H-bond in the molecular structure. The interaction of copper(II) complex with calf thymus DNA (CT-DNA) was investigated by electronic absorption spectroscopic technique. The electronic evidence strongly shows that the compound interacts with calf thymus through intercalation with a binding constant of Kb = 5.7 × 104 M–1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Butsch, A. Sandleben, M.H. Dokoohaki, A.R. Zolghadr and A. Klein, Inorganics, 7, 53 (2019); https://doi.org/10.3390/inorganics7040053.
- L.J. Bourhis, O.V. Dolomanov, R.J. Gildea, J.A.K. Howard and H. Puschmann, Acta Crystallogr. A, 71, 59 (2015); https://doi.org/10.1107/S2053273314022207.
- J. Miklovic, D. Valigura, I. Svoboda, J. Moncol and M. Mazur, Nova Biotechnol. Chem., 15, 190 (2016); https://doi.org/10.1515/nbec-2016-0019.
- R.J. Butcher, J.W. Overman and E. Sinn, J. Am. Chem. Soc., 102, 3276 (1980); https://doi.org/10.1021/ja00529a079.
- H. Banerjee, S. Chakraborty and T. Saha-Dasgupta, Inorganics, 5, 47 (2017); https://doi.org/10.3390/inorganics5030047.
- E.J. Jung, U.K. Lee and B.K. Koo, Inorg. Chim. Acta, 361, 2962 (2008); https://doi.org/10.1016/j.ica.2008.01.029.
- F.-N. Shi, L. Cunha-Silva, T. Trindade, F.A.A. Paz and J. Rocha, Cryst. Growth Des., 9, 2098 (2009); https://doi.org/10.1021/cg8004932.
- M. Tabatabace, R. Mohamadinasab, K. Ghaini and H.R. Khavasi, Bull. Chem. Soc. Ethiop., 3, 401 (2010).
- C. Xie, Z. Zhang, X. Wang, X. Liu, G. Shen, R. Wang and D. Shen, J. Coord. Chem., 57, 1173 (2004); https://doi.org/10.1080/00958970412331281782.
- G. D’Ascenzo, A. Marino, M. Sabbatini and T. Bica, Thermochim. Acta, 25, 325 (1979); https://doi.org/10.1016/0040-6031(78)87008-7.
- E.E. Sileo, M.A. Blesa, G. Rigotti, B.E. Rivero and E.E. Castellano, Polyhedron, 15, 4531 (1996); https://doi.org/10.1016/0277-5387(96)00189-1.
- Z.A. Saddiqi, I.A. Ansari, F. Sama and M. Shahid, Int. J. Innov. Res. Sci. Eng. Technol., 3, 8673 (2014).
- H. Park, A.J. Lough, J.C. Kim, M.H. Jeong and Y.S. Kang, Inorg. Chim. Acta, 360, 2819 (2007); https://doi.org/10.1016/j.ica.2006.12.047.
- J.R.-H. Xie, V.H. Smith Jr. and R.E. Allen, J. Chem. Phys., 322, 254 (2006); https://doi.org/10.1016/j.chemphys.2005.08.040.
- E.W. Schmidt, Hydrazine and its Derivatives, Wiley: New York (1984).
- L.F. Audrieth and B.O. Ackerson, The Chemistry of Hydrazine, Wiley: New York (1951).
- A. I. Vogel, A text Book of Quantitative Inorganic Analysis, Longman: London, edn. 3 (1962).
- L. Erdey and I. Buzaz, Gravimetric Analysis, Part II, Pergamon, London (1965).
- C.K. Johnson, ORTEP ORNL-3794, Oak Ridge National Laboratory, Tennessee (1976).
- G.M. Sheldrick, SHELXL-97 program for Crystal Determination, University of Cambridge, England (1977).
- N.K. Dalley, M.H. Mueller and S.H. Simonsen, Inorg. Chem., 11, 1840 (1972); https://doi.org/10.1021/ic50114a020.
- M. Suenaga, J. Comput. Chem. Jpn., 4, 25 (2005); https://doi.org/10.2477/jccj.4.25.
- M.A. Spackman and D. Jayatilaka, CrystEngComm, 11, 19 (2009); https://doi.org/10.1039/B818330A.
- F.L. Hirshfeld, Theor. Chim. Acta, 44, 129 (1977); https://doi.org/10.1007/BF00549096.
- H.F. Clausen, M.S. Chevallier, M.A. Spackman and B.B. Iversen, New J. Chem., 34, 193 (2010); https://doi.org/10.1039/B9NJ00463G.
- A.L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J.J. McKinnon and B. Kahr, Cryst. Growth Des., 8, 4517 (2008); https://doi.org/10.1021/cg8005212.
- S.K. Wolff, D.J. Grimwood, J.J. McKinnon, D. Jayatilaka and M.A. Spackman, Crystal Explorer 2.0; University of Western Australia: Perth, Australia (2007).
- W. Williams, M.E. Cuvelier and C. Berset, LWT-Food Sci. Technol., 28, 25 (1995); https://doi.org/10.1016/S0023-6438(95)80008-5.
- R. Ragul and B.N. Sivasankar, Inorg. Metal-Org. Nano-Metal Chem., 43, 382 (2013); https://doi.org/10.1080/15533174.2012.740736.
- G.B. Bagihalli, P.G. Avaji, S.A. Patil and P.S. Badami, Eur. J. Med. Chem., 43, 2639 (2008); https://doi.org/10.1016/j.ejmech.2008.02.013.
- M. Saravanabhavan, K. Sathya, V.G. Puranik and M. Sekar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 118, 399 (2014); https://doi.org/10.1016/j.saa.2013.08.115.
- M. Saravanabhavan, V. Murugesan and M. Sekar, J. Photochem. Photobiol., 133, 145 (2014); https://doi.org/10.1016/j.jphotobiol.2014.02.020.
- S. Sathiyaraj, K. Sampath, G. Raja, R.J. Butcher, C. Jayabalakrishnan and S.K. Gupta, Inorg. Chim. Acta, 406, 44 (2013); https://doi.org/10.1016/j.ica.2013.07.001.
- G.H. Cui, T.F. Liu and X. Peng, J. Chem. Crystallogr., 41, 322 (2011); https://doi.org/10.1007/s10870-010-9881-9.
- A. Braibanti, F. Dallavalle, M.A. Pellinghelli and E. Leporati, Inorg. Chem., 7, 1430 (1968); https://doi.org/10.1021/ic50065a034.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley Interscience: New York, edn 3 (1978).
- B. Murphy, G. Roberts, S. Tyagi and B.J. Hathaway, J. Mol. Struct., 698, 25 (2004); https://doi.org/10.1016/j.molstruc.2004.02.025.
- M. Imran, J. Iqbal, S. Iqbal and N. Ijaz, Turk. J. Biol., 31, 67 (2007).
- A.A.H. Kadhum, A.B. Mohamad, A.A. Al-Amiery and M.S. Takriff, Molecules, 16, 6969 (2011); https://doi.org/10.3390/molecules16086969.
- Z.-C. Liu, B.-D. Wang, B. Li, Q. Wang, Z.-Y. Yang, T.-R. Li and Y. Li, Eur. J. Med. Chem., 45, 5353 (2010); https://doi.org/10.1016/j.ejmech.2010.08.060.
- A. Wolfe, G.H. Shimer Jr. and T. Meehan, Biochemistry, 26, 6392 (1987); https://doi.org/10.1021/bi00394a013.
- S. Nafisi, A.A. Saboury, N. Keramat, J.-F. Neault and H.-A. TajmirRiahi, J. Mol. Struct., 827, 35 (2007); https://doi.org/10.1016/j.molstruc.2006.05.004.
References
K. Butsch, A. Sandleben, M.H. Dokoohaki, A.R. Zolghadr and A. Klein, Inorganics, 7, 53 (2019); https://doi.org/10.3390/inorganics7040053.
L.J. Bourhis, O.V. Dolomanov, R.J. Gildea, J.A.K. Howard and H. Puschmann, Acta Crystallogr. A, 71, 59 (2015); https://doi.org/10.1107/S2053273314022207.
J. Miklovic, D. Valigura, I. Svoboda, J. Moncol and M. Mazur, Nova Biotechnol. Chem., 15, 190 (2016); https://doi.org/10.1515/nbec-2016-0019.
R.J. Butcher, J.W. Overman and E. Sinn, J. Am. Chem. Soc., 102, 3276 (1980); https://doi.org/10.1021/ja00529a079.
H. Banerjee, S. Chakraborty and T. Saha-Dasgupta, Inorganics, 5, 47 (2017); https://doi.org/10.3390/inorganics5030047.
E.J. Jung, U.K. Lee and B.K. Koo, Inorg. Chim. Acta, 361, 2962 (2008); https://doi.org/10.1016/j.ica.2008.01.029.
F.-N. Shi, L. Cunha-Silva, T. Trindade, F.A.A. Paz and J. Rocha, Cryst. Growth Des., 9, 2098 (2009); https://doi.org/10.1021/cg8004932.
M. Tabatabace, R. Mohamadinasab, K. Ghaini and H.R. Khavasi, Bull. Chem. Soc. Ethiop., 3, 401 (2010).
C. Xie, Z. Zhang, X. Wang, X. Liu, G. Shen, R. Wang and D. Shen, J. Coord. Chem., 57, 1173 (2004); https://doi.org/10.1080/00958970412331281782.
G. D’Ascenzo, A. Marino, M. Sabbatini and T. Bica, Thermochim. Acta, 25, 325 (1979); https://doi.org/10.1016/0040-6031(78)87008-7.
E.E. Sileo, M.A. Blesa, G. Rigotti, B.E. Rivero and E.E. Castellano, Polyhedron, 15, 4531 (1996); https://doi.org/10.1016/0277-5387(96)00189-1.
Z.A. Saddiqi, I.A. Ansari, F. Sama and M. Shahid, Int. J. Innov. Res. Sci. Eng. Technol., 3, 8673 (2014).
H. Park, A.J. Lough, J.C. Kim, M.H. Jeong and Y.S. Kang, Inorg. Chim. Acta, 360, 2819 (2007); https://doi.org/10.1016/j.ica.2006.12.047.
J.R.-H. Xie, V.H. Smith Jr. and R.E. Allen, J. Chem. Phys., 322, 254 (2006); https://doi.org/10.1016/j.chemphys.2005.08.040.
E.W. Schmidt, Hydrazine and its Derivatives, Wiley: New York (1984).
L.F. Audrieth and B.O. Ackerson, The Chemistry of Hydrazine, Wiley: New York (1951).
A. I. Vogel, A text Book of Quantitative Inorganic Analysis, Longman: London, edn. 3 (1962).
L. Erdey and I. Buzaz, Gravimetric Analysis, Part II, Pergamon, London (1965).
C.K. Johnson, ORTEP ORNL-3794, Oak Ridge National Laboratory, Tennessee (1976).
G.M. Sheldrick, SHELXL-97 program for Crystal Determination, University of Cambridge, England (1977).
N.K. Dalley, M.H. Mueller and S.H. Simonsen, Inorg. Chem., 11, 1840 (1972); https://doi.org/10.1021/ic50114a020.
M. Suenaga, J. Comput. Chem. Jpn., 4, 25 (2005); https://doi.org/10.2477/jccj.4.25.
M.A. Spackman and D. Jayatilaka, CrystEngComm, 11, 19 (2009); https://doi.org/10.1039/B818330A.
F.L. Hirshfeld, Theor. Chim. Acta, 44, 129 (1977); https://doi.org/10.1007/BF00549096.
H.F. Clausen, M.S. Chevallier, M.A. Spackman and B.B. Iversen, New J. Chem., 34, 193 (2010); https://doi.org/10.1039/B9NJ00463G.
A.L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J.J. McKinnon and B. Kahr, Cryst. Growth Des., 8, 4517 (2008); https://doi.org/10.1021/cg8005212.
S.K. Wolff, D.J. Grimwood, J.J. McKinnon, D. Jayatilaka and M.A. Spackman, Crystal Explorer 2.0; University of Western Australia: Perth, Australia (2007).
W. Williams, M.E. Cuvelier and C. Berset, LWT-Food Sci. Technol., 28, 25 (1995); https://doi.org/10.1016/S0023-6438(95)80008-5.
R. Ragul and B.N. Sivasankar, Inorg. Metal-Org. Nano-Metal Chem., 43, 382 (2013); https://doi.org/10.1080/15533174.2012.740736.
G.B. Bagihalli, P.G. Avaji, S.A. Patil and P.S. Badami, Eur. J. Med. Chem., 43, 2639 (2008); https://doi.org/10.1016/j.ejmech.2008.02.013.
M. Saravanabhavan, K. Sathya, V.G. Puranik and M. Sekar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 118, 399 (2014); https://doi.org/10.1016/j.saa.2013.08.115.
M. Saravanabhavan, V. Murugesan and M. Sekar, J. Photochem. Photobiol., 133, 145 (2014); https://doi.org/10.1016/j.jphotobiol.2014.02.020.
S. Sathiyaraj, K. Sampath, G. Raja, R.J. Butcher, C. Jayabalakrishnan and S.K. Gupta, Inorg. Chim. Acta, 406, 44 (2013); https://doi.org/10.1016/j.ica.2013.07.001.
G.H. Cui, T.F. Liu and X. Peng, J. Chem. Crystallogr., 41, 322 (2011); https://doi.org/10.1007/s10870-010-9881-9.
A. Braibanti, F. Dallavalle, M.A. Pellinghelli and E. Leporati, Inorg. Chem., 7, 1430 (1968); https://doi.org/10.1021/ic50065a034.
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley Interscience: New York, edn 3 (1978).
B. Murphy, G. Roberts, S. Tyagi and B.J. Hathaway, J. Mol. Struct., 698, 25 (2004); https://doi.org/10.1016/j.molstruc.2004.02.025.
M. Imran, J. Iqbal, S. Iqbal and N. Ijaz, Turk. J. Biol., 31, 67 (2007).
A.A.H. Kadhum, A.B. Mohamad, A.A. Al-Amiery and M.S. Takriff, Molecules, 16, 6969 (2011); https://doi.org/10.3390/molecules16086969.
Z.-C. Liu, B.-D. Wang, B. Li, Q. Wang, Z.-Y. Yang, T.-R. Li and Y. Li, Eur. J. Med. Chem., 45, 5353 (2010); https://doi.org/10.1016/j.ejmech.2010.08.060.
A. Wolfe, G.H. Shimer Jr. and T. Meehan, Biochemistry, 26, 6392 (1987); https://doi.org/10.1021/bi00394a013.
S. Nafisi, A.A. Saboury, N. Keramat, J.-F. Neault and H.-A. TajmirRiahi, J. Mol. Struct., 827, 35 (2007); https://doi.org/10.1016/j.molstruc.2006.05.004.