Copyright (c) 2023 Nelson Amirtharaj S, Mariappan M, Beaula premavathi V
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical Performance of Flower-like ZnO Nanostructure Crystal for Supercapacitor Electrode Applications
Corresponding Author(s) : Nelson Amirtharaj S
Asian Journal of Chemistry,
Vol. 35 No. 9 (2023): Vol 35 Issue 9, 2023
Abstract
straightforward, easy and low-cost process using cetyltrimethylammonium bromide (CTAB) as a templated sonochemical production method was used to prepare ZnO nanostructures with the appearance of flowers. The morphological characteristics of ZnO materials have a more significant impact on variables like the CTAB template and sonochemical reaction time. The advantage of the flower-like ZnO materials is the more active reaction centre, which improves redox processes and results in outstanding electrochemical attributes like greater specific capacitance, excellent rate capability and better cyclic stability. The specific capacitance of the flower-shaped ZnO nanostructures (ZnO-2) from the cyclic voltammetric (CV) analysis was found to be 425 F g–1 at a scan rate of 5 mV s–1 and the charge/discharge study renders the specific capacitance is 426 F g–1 at a current density of 1 Ag–1. After 3000 CV cycles at a scan rate of 100 mV s–1, 89% of the initial capacitance still was retained in the long-term cyclic stability analysis. The distinctive flower-like ZnO nanostructures can be extended more for supercapacitor device applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.A. Delbari, L.S. Ghadimi, R. Hadi, S. Farhoudian, A. Babapoor, A.S. Namini, M. Nedaei, Q.V. Le, M. Shokouhimehr, M. Mohammadi and M.S. Asl, J. Alloys Comp., 857, 158281 (2021); https://doi.org/10.1016/j.jallcom.2020.158281
- C.C. Hu, K.H. Chang, M.C. Lin and Y.T. Wu, Nano Lett., 6, 2690 (2006); https://doi.org/10.1021/nl061576a
- V. Subramanian, S.C. Hall, P.H. Smith and B. Rambabu, Solid State Ion., 175, 511 (2004); https://doi.org/10.1016/j.ssi.2004.01.070
- S. Zhao, T. Liu, D. Hou, W. Zeng, B. Miao, S. Hussain, X. Peng and M.S. Javed, Appl. Surf. Sci., 356, 259 (2015); https://doi.org/10.1016/j.apsusc.2015.08.037
- G.D. Jeyaleela, J.R. Vimala, S.M. Sheela, A. Agila, M.S. Bharathy and M. Divya, Orient. J. Chem., 36, 655 (2020); https://doi.org/10.13005/ojc/360409
- V. Bonu, B. Gupta, S. Chandra, A. Das, S. Dhara and A.K. Tyagi, Electrochim. Acta, 203, 230 (2016); https://doi.org/10.1016/j.electacta.2016.03.153
- G.A. Babu, G. Ravi, T. Mahalingam, M. Kumaresavanji and Y. Hayakawa, Dalton Trans., 44, 4485 (2015); https://doi.org/10.1039/C4DT03483J
- R. Tummala, R.K. Guduru and P.S. Mohanty, J. Power Sources, 209, 44 (2012); https://doi.org/10.1016/j.jpowsour.2012.02.071
- G. Theophil Anand, D. Renuka, R. Ramesh, L. Anandaraj, S. John Sundaram, G. Ramalingam, C.M. Magdalane, A.K.H. Bashir, M. Maaza and K. Kaviyarasu, Surf. Interfaces, 17, 100376 (2019); https://doi.org/10.1016/j.surfin.2019.100376
- J. Yang, T. Lan, J. Liu, Y. Song and M. Wei, Electrochim. Acta, 105, 489 (2013); https://doi.org/10.1016/j.electacta.2013.05.023
- T. Wei, N. Zhang, Y. Ji, J. Zhang, Y. Zhu and T. Yi, Chinese Chem. Lett., 33, 714 (2022); https://doi.org/10.1016/j.cclet.2021.06.037
- G.M. Di Mari, G. Mineo, G. Franzò, S. Mirabella, E. Bruno and V. Strano, Nanomaterials, 12, 2588 (2022); https://doi.org/10.3390/nano12152588
- K.S. Lee, C.W. Park and J.D. Kim, Colloids Surf. A Physicochem. Eng. Asp., 512, 87 (2017); https://doi.org/10.1016/j.colsurfa.2016.10.022
- G. Huang, W. Zhang, S. Xu, Y. Li and Y. Yang, Ionics, 22, 2169 (2016); https://doi.org/10.1007/s11581-016-1745-7
- M. Selvakumar, D.K. Bhat, A.M. Aggarwal, S.P. Iyer and G. Sravani, Physica B, 405, 2286 (2010); https://doi.org/10.1016/j.physb.2010.02.028
- X. Li, Z. Wang, Y. Qiu, Q. Pan and P. Hu, J. Alloys Compd., 620, 31 (2015); https://doi.org/10.1016/j.jallcom.2014.09.105
- K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo and H. Siegbahn, J. Photochem. Photobiol. Chem., 148, 57 (2002); https://doi.org/10.1016/S1010-6030(02)00039-4
- K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo and S. Niki, Thin Solid Films, 431–432, 369 (2003); https://doi.org/10.1016/S0040-6090(03)00243-8
- B.-H. Hwang, C.-L. Chang, C.-S. Hsu and C.-Y. Fu, J. Phys. D Appl. Phys., 40, 3448 (2007); https://doi.org/10.1088/0022-3727/40/11/028
- S.J. Pearton and F. Ren, Curr. Opin. Chem. Eng., 3, 51 (2014); https://doi.org/10.1016/j.coche.2013.11.002
- K. Keis, L. Vayssieres, S.E. Lindquist and A. Hagfeldt, Nanostruct. Mater., 12, 487 (1999); https://doi.org/10.1016/S0965-9773(99)00165-8
- H. Bishwakarma and A.K. Das, J. Electron. Mater., 49, 1541 (2020); https://doi.org/10.1007/s11664-019-07835-x
- P.E. Saranya and S. Selladurai, Int. J. Nanosci., 17, 1760002 (2018); https://doi.org/10.1142/S0219581X1760002X
- M. Faisal, S.B. Khan, M.M. Rahman, A. Jamal, A.M. Asiri and M.M. Abdullah, Appl. Surf. Sci., 258, 672 (2011); https://doi.org/10.1016/j.apsusc.2011.07.067
- Q. Yuan, S. Hein and R.D.K. Misra, Acta Biomater., 6, 2732 (2010); https://doi.org/10.1016/j.actbio.2010.01.025
- A. Sahai and N. Goswami, Physica E, 58, 130 (2014); https://doi.org/10.1016/j.physe.2013.12.009
- A.S. Lanje, S.J. Sharma, R.S. Ningthoujam, J.S. Ahn and R.B. Pode, Adv. Powder Technol., 24, 331 (2013); https://doi.org/10.1016/j.apt.2012.08.005
- X. Wang, M. Li, Z. Chang, Y. Wang, B. Chen, L. Zhang and Y. Wu, J. Electrochem. Soc., 162, A1966 (2015); https://doi.org/10.1149/2.0041511jes
- J. Zhang, H. Feng, Q. Qin, G. Zhang, Y. Cui, Z. Chai and W. Zheng, J. Mater. Chem. A Mater. Energy Sustain., 4, 6357 (2016); https://doi.org/10.1039/C6TA00397D
- A.A. Kashale, M.M. Vadiyar, S.S. Kolekar, B.R. Sathe, J.Y. Chang, H.N. Dhakal and A.V. Ghule, RSC Adv., 7, 36886 (2017); https://doi.org/10.1039/C7RA05655A
References
S.A. Delbari, L.S. Ghadimi, R. Hadi, S. Farhoudian, A. Babapoor, A.S. Namini, M. Nedaei, Q.V. Le, M. Shokouhimehr, M. Mohammadi and M.S. Asl, J. Alloys Comp., 857, 158281 (2021); https://doi.org/10.1016/j.jallcom.2020.158281
C.C. Hu, K.H. Chang, M.C. Lin and Y.T. Wu, Nano Lett., 6, 2690 (2006); https://doi.org/10.1021/nl061576a
V. Subramanian, S.C. Hall, P.H. Smith and B. Rambabu, Solid State Ion., 175, 511 (2004); https://doi.org/10.1016/j.ssi.2004.01.070
S. Zhao, T. Liu, D. Hou, W. Zeng, B. Miao, S. Hussain, X. Peng and M.S. Javed, Appl. Surf. Sci., 356, 259 (2015); https://doi.org/10.1016/j.apsusc.2015.08.037
G.D. Jeyaleela, J.R. Vimala, S.M. Sheela, A. Agila, M.S. Bharathy and M. Divya, Orient. J. Chem., 36, 655 (2020); https://doi.org/10.13005/ojc/360409
V. Bonu, B. Gupta, S. Chandra, A. Das, S. Dhara and A.K. Tyagi, Electrochim. Acta, 203, 230 (2016); https://doi.org/10.1016/j.electacta.2016.03.153
G.A. Babu, G. Ravi, T. Mahalingam, M. Kumaresavanji and Y. Hayakawa, Dalton Trans., 44, 4485 (2015); https://doi.org/10.1039/C4DT03483J
R. Tummala, R.K. Guduru and P.S. Mohanty, J. Power Sources, 209, 44 (2012); https://doi.org/10.1016/j.jpowsour.2012.02.071
G. Theophil Anand, D. Renuka, R. Ramesh, L. Anandaraj, S. John Sundaram, G. Ramalingam, C.M. Magdalane, A.K.H. Bashir, M. Maaza and K. Kaviyarasu, Surf. Interfaces, 17, 100376 (2019); https://doi.org/10.1016/j.surfin.2019.100376
J. Yang, T. Lan, J. Liu, Y. Song and M. Wei, Electrochim. Acta, 105, 489 (2013); https://doi.org/10.1016/j.electacta.2013.05.023
T. Wei, N. Zhang, Y. Ji, J. Zhang, Y. Zhu and T. Yi, Chinese Chem. Lett., 33, 714 (2022); https://doi.org/10.1016/j.cclet.2021.06.037
G.M. Di Mari, G. Mineo, G. Franzò, S. Mirabella, E. Bruno and V. Strano, Nanomaterials, 12, 2588 (2022); https://doi.org/10.3390/nano12152588
K.S. Lee, C.W. Park and J.D. Kim, Colloids Surf. A Physicochem. Eng. Asp., 512, 87 (2017); https://doi.org/10.1016/j.colsurfa.2016.10.022
G. Huang, W. Zhang, S. Xu, Y. Li and Y. Yang, Ionics, 22, 2169 (2016); https://doi.org/10.1007/s11581-016-1745-7
M. Selvakumar, D.K. Bhat, A.M. Aggarwal, S.P. Iyer and G. Sravani, Physica B, 405, 2286 (2010); https://doi.org/10.1016/j.physb.2010.02.028
X. Li, Z. Wang, Y. Qiu, Q. Pan and P. Hu, J. Alloys Compd., 620, 31 (2015); https://doi.org/10.1016/j.jallcom.2014.09.105
K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo and H. Siegbahn, J. Photochem. Photobiol. Chem., 148, 57 (2002); https://doi.org/10.1016/S1010-6030(02)00039-4
K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo and S. Niki, Thin Solid Films, 431–432, 369 (2003); https://doi.org/10.1016/S0040-6090(03)00243-8
B.-H. Hwang, C.-L. Chang, C.-S. Hsu and C.-Y. Fu, J. Phys. D Appl. Phys., 40, 3448 (2007); https://doi.org/10.1088/0022-3727/40/11/028
S.J. Pearton and F. Ren, Curr. Opin. Chem. Eng., 3, 51 (2014); https://doi.org/10.1016/j.coche.2013.11.002
K. Keis, L. Vayssieres, S.E. Lindquist and A. Hagfeldt, Nanostruct. Mater., 12, 487 (1999); https://doi.org/10.1016/S0965-9773(99)00165-8
H. Bishwakarma and A.K. Das, J. Electron. Mater., 49, 1541 (2020); https://doi.org/10.1007/s11664-019-07835-x
P.E. Saranya and S. Selladurai, Int. J. Nanosci., 17, 1760002 (2018); https://doi.org/10.1142/S0219581X1760002X
M. Faisal, S.B. Khan, M.M. Rahman, A. Jamal, A.M. Asiri and M.M. Abdullah, Appl. Surf. Sci., 258, 672 (2011); https://doi.org/10.1016/j.apsusc.2011.07.067
Q. Yuan, S. Hein and R.D.K. Misra, Acta Biomater., 6, 2732 (2010); https://doi.org/10.1016/j.actbio.2010.01.025
A. Sahai and N. Goswami, Physica E, 58, 130 (2014); https://doi.org/10.1016/j.physe.2013.12.009
A.S. Lanje, S.J. Sharma, R.S. Ningthoujam, J.S. Ahn and R.B. Pode, Adv. Powder Technol., 24, 331 (2013); https://doi.org/10.1016/j.apt.2012.08.005
X. Wang, M. Li, Z. Chang, Y. Wang, B. Chen, L. Zhang and Y. Wu, J. Electrochem. Soc., 162, A1966 (2015); https://doi.org/10.1149/2.0041511jes
J. Zhang, H. Feng, Q. Qin, G. Zhang, Y. Cui, Z. Chai and W. Zheng, J. Mater. Chem. A Mater. Energy Sustain., 4, 6357 (2016); https://doi.org/10.1039/C6TA00397D
A.A. Kashale, M.M. Vadiyar, S.S. Kolekar, B.R. Sathe, J.Y. Chang, H.N. Dhakal and A.V. Ghule, RSC Adv., 7, 36886 (2017); https://doi.org/10.1039/C7RA05655A