Copyright (c) 2023 Murodjon Samadiy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Solubility Studies of Sulfates of Copper, Zinc and Cobalt in Phosphoric Acid at 30 ºC
Corresponding Author(s) : Murodjon Samadiy
Asian Journal of Chemistry,
Vol. 35 No. 9 (2023): Vol 35 Issue 9, 2023
Abstract
Present study reports the isothermal experiments conducted at 30 ºC to ascertain the solubility of copper, zinc and cobalt sulfates in phosphoric acid. The solubility diagram of CuSO4-H3PO4-H2O system is shown to have one branch, this is equivalent to the discharge of copper sulfate pentahydrate into the equilibrium solid phase. The solubility diagrams of zinc and cobalt sulfates have two branches of salt crystallization, corresponding to the release of hexahydrates and monohydrates of zinc and cobalt with increasing phosphoric acid content, saturated solutions in the ZnSO4-H3PO4-H2O and CoSO4-H3PO4-H2O systems become more viscous and denser, reaching a maximum at the transition point, while these indicators in the CuSO4-H3PO4-H2O system only increase.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Ma, A. Xu and Z.M.M. Cheng, Hortic. Plant J., 7, 552 (2021); https://doi.org/10.1016/j.hpj.2020.05.007
- A. Vega, J.A. O’Brien and R.A. Gutiérrez, Curr. Opin. Plant Biol., 52, 155 (2019); https://doi.org/10.1016/j.pbi.2019.10.001
- F.J. Justel, M.E. Taboada and Y.P. Jimenez, J. Mol. Liq., 249, 702 (2018); https://doi.org/10.1016/j.molliq.2017.11.083
- M. Jalali and R. Fakhri, J. Food Compos. Anal., 102, 104049 (2021); https://doi.org/10.1016/j.jfca.2021.104049
- J. Wang, G. Du, J. Tian, C. Jiang, Y. Zhang and W. Zhang, Agric. Water Manage., 255, 106992 (2021); https://doi.org/10.1016/j.agwat.2021.106992
- Y. Zhang, Y. Zhang, G. Liu, S. Xu, J. Dai, W. Li, Z. Li, D. Zhang, C. Li and H. Dong, Field Crops Res., 261, 107989 (2021); https://doi.org/10.1016/j.fcr.2020.107989
- K. Mikula, G. Izydorczyk, D. Skrzypczak, M. Mironiuk, K. Moustakas, A. Witek-Krowiak and K. Chojnacka, Sci. Total Environ., 712, 136365 (2020); https://doi.org/10.1016/j.scitotenv.2019.136365
- L.C. Nunes, E.R. Pereira-Filho, M.B.B. Guerra and F.J. Krug, Spectrochim. Acta B: Atom. Spectrosc., 64, 565 (2019); https://doi.org/10.1016/j.sab.2009.05.002
- R. Moreno-Salazar, I. Sánchez-García, W. Chan-Cupul, E. Ruiz-Sánchez, H.A. Hernández-Ortega, J. Pineda-Lucatero and D. Figueroa-Chávez, Sci. Hortic., 261, 108950 (2020); https://doi.org/10.1016/j.scienta.2019.108950
- M. Sihlahla, H. Mouri, P.N. Nomngongo and J. African Earth Sci., 160, 103635 (2019); https://doi.org/10.1016/j.jafrearsci.2019.103635
- O.A. Osinuga, A.B. Aduloju and C.O. Oyegoke, J. Trace Elem. Miner., 5, 100090 (2023); https://doi.org/10.1016/j.jtemin.2023.100090
- X. Wang, J. Shen and H. Liao, Plant Sci., 179, 302 (2010); https://doi.org/10.1016/j.plantsci.2010.06.007
- P.S. Bindraban, C. Dimkpa, L. Nagarajan, A. Roy and R. Rabbinge, Biol. Fertil. Soils, 51, 897 (2015); https://doi.org/10.1007/s00374-015-1039-7
- A.G. Revenko, X-Ray Spectral Fluorescence Analysis of Natural Materials, Novosibirsk: Nauka, pp. 1-264 (1994).
- L.N. Mazalov, X-ray Spectra and Chemical Bond, Novosibirsk: Nauka, p. 111 (1982).
- T. Stanimirova, T. Kerestedjian and G. Kirov, Appl. Clay Sci., 135, 16 (2017); https://doi.org/10.1016/j.clay.2016.08.032
References
Y. Ma, A. Xu and Z.M.M. Cheng, Hortic. Plant J., 7, 552 (2021); https://doi.org/10.1016/j.hpj.2020.05.007
A. Vega, J.A. O’Brien and R.A. Gutiérrez, Curr. Opin. Plant Biol., 52, 155 (2019); https://doi.org/10.1016/j.pbi.2019.10.001
F.J. Justel, M.E. Taboada and Y.P. Jimenez, J. Mol. Liq., 249, 702 (2018); https://doi.org/10.1016/j.molliq.2017.11.083
M. Jalali and R. Fakhri, J. Food Compos. Anal., 102, 104049 (2021); https://doi.org/10.1016/j.jfca.2021.104049
J. Wang, G. Du, J. Tian, C. Jiang, Y. Zhang and W. Zhang, Agric. Water Manage., 255, 106992 (2021); https://doi.org/10.1016/j.agwat.2021.106992
Y. Zhang, Y. Zhang, G. Liu, S. Xu, J. Dai, W. Li, Z. Li, D. Zhang, C. Li and H. Dong, Field Crops Res., 261, 107989 (2021); https://doi.org/10.1016/j.fcr.2020.107989
K. Mikula, G. Izydorczyk, D. Skrzypczak, M. Mironiuk, K. Moustakas, A. Witek-Krowiak and K. Chojnacka, Sci. Total Environ., 712, 136365 (2020); https://doi.org/10.1016/j.scitotenv.2019.136365
L.C. Nunes, E.R. Pereira-Filho, M.B.B. Guerra and F.J. Krug, Spectrochim. Acta B: Atom. Spectrosc., 64, 565 (2019); https://doi.org/10.1016/j.sab.2009.05.002
R. Moreno-Salazar, I. Sánchez-García, W. Chan-Cupul, E. Ruiz-Sánchez, H.A. Hernández-Ortega, J. Pineda-Lucatero and D. Figueroa-Chávez, Sci. Hortic., 261, 108950 (2020); https://doi.org/10.1016/j.scienta.2019.108950
M. Sihlahla, H. Mouri, P.N. Nomngongo and J. African Earth Sci., 160, 103635 (2019); https://doi.org/10.1016/j.jafrearsci.2019.103635
O.A. Osinuga, A.B. Aduloju and C.O. Oyegoke, J. Trace Elem. Miner., 5, 100090 (2023); https://doi.org/10.1016/j.jtemin.2023.100090
X. Wang, J. Shen and H. Liao, Plant Sci., 179, 302 (2010); https://doi.org/10.1016/j.plantsci.2010.06.007
P.S. Bindraban, C. Dimkpa, L. Nagarajan, A. Roy and R. Rabbinge, Biol. Fertil. Soils, 51, 897 (2015); https://doi.org/10.1007/s00374-015-1039-7
A.G. Revenko, X-Ray Spectral Fluorescence Analysis of Natural Materials, Novosibirsk: Nauka, pp. 1-264 (1994).
L.N. Mazalov, X-ray Spectra and Chemical Bond, Novosibirsk: Nauka, p. 111 (1982).
T. Stanimirova, T. Kerestedjian and G. Kirov, Appl. Clay Sci., 135, 16 (2017); https://doi.org/10.1016/j.clay.2016.08.032