Copyright (c) 2023 Vijayatha M, Vijayalaxmi B, Sajeeda Md, Ravali B, Venkatesham K, Kalpana M, Padma B, Hari Padmasri Aytam
This work is licensed under a Creative Commons Attribution 4.0 International License.
Visible and Solar Light Degradation of Ciprofloxacin and Norfloxacin using Titania Nanocomposite
Corresponding Author(s) : Hari Padmasri Aytam
Asian Journal of Chemistry,
Vol. 35 No. 9 (2023): Vol 35 Issue 9, 2023
Abstract
A simple sol-gel approach was used to synthesize TiO2 nanoparticles and its composite TiO2-PEG (TPG) using polyethylene glycol (PEG). The synthesized samples were characterized by XRD, SEM -EDX, TEM, UV-DRS, photoluminescence, Raman, XPS and BET-surface area techniques. The development of non-toxic, cost-effective, biocompatible and efficient polymeric nanocomposite increases the mechanical, thermophysical and physico-chemical properties of prepared nanomaterials. PEG affected the reaction with the crystallization process of the prepared titania nanoparticles to a great extent. The antibiotics ciprofloxacin and norfloxacin of fluoroquinolone class are widely used to treat certain bacterial infections and at the same time their residues generate serious health issues due to the lack of proper waste water treatment systems thus causing environmental pollution. The present study is thus
focused on synthesizing efficient titania PEG nanocomposite to enhance the photocatalytic degradation of antibiotics in both solar and visible light. Efficiency of degradation was achieved maximum upto 74% with TPG and 64% with pure TiO2 nanoparticles for ciprofloxacin in visible light, similarly the degradation of norfloxacin was achieved 65% with TPG and 57% with TiO2 nanoparticles. Sunlight irradiation resulted in the degradation of ciprofloxacin to 80.2% with TPG and 77% with TiO2 nanoparticles whereas it was 78.7% with TPG and 68.6% with TiO2 nanoparticles for the degradation of norfloxacin. These results indicate that the catalyst TPG showed higher activity in presence of solar and visible light than TiO2 nanoparticles. Recyclability was also studied showing the stability of the photocatalyst used even after five successive runs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Kumar, J. Travas-Sejdic and L.P. Padhye, Chem. Eng. J. Adv., 4, 100047 (2020); https://doi.org/10.1016/j.ceja.2020.100047
- I.-Y. Jeon and J.-B. Baek, Materials, 3, 3654 (2010); https://doi.org/10.3390/ma3063654
- V.V. Vodnik, J.V. Vukovic and J.M. Nedeljkovic, Colloid Polym. Sci., 287, 847 (2009); https://doi.org/10.1007/s00396-009-2039-7
- C.I. Pearce, J.R. Lloyd and J.T. Guthrie, Dyes Pigments, 58, 179 (2003); https://doi.org/10.1016/S0143-7208(03)00064-0
- B. Van Der Bruggen and C. Vandecasteele, Environ. Pollut., 122, 435 (2003); https://doi.org/10.1016/S0269-7491(02)00308-1
- J. Hollender, S.G. Zimmermann, S. Koepke, M. Krauss, C.S. McArdell, C. Ort, H. Singer, U. von Gunten and H. Siegrist, Environ. Sci. Technol., 43, 7862 (2009); https://doi.org/10.1021/es9014629
- C.Y. Hu, S.L. Lo and W.H. Kuan, Water Res., 37, 4513 (2003); https://doi.org/10.1016/S0043-1354(03)00378-6
- M. Iram, C. Guo, Y. Guan, A. Ishfaq and H. Liu, J. Hazard. Mater., 181, 1039 (2010); https://doi.org/10.1016/j.jhazmat.2010.05.119
- C. Vanlalhmingmawia, D. Tiwari and D.-J. Kim, Environ. Res., 218, 115007 (2023); https://doi.org/10.1016/j.envres.2022.115007
- J. Zhang, Y. Chen, J. Liang and H. Xu, Environ. Eng. Res., 28, 220513 (2023); https://doi.org/10.4491/eer.2022.513
- P.S. Saud, B. Pant, A.M. Alam, Z.K. Ghouri, M. Park and H.Y. Kim, Ceram. Int., 41, 11953 (2015); https://doi.org/10.1016/j.ceramint.2015.06.007
- E. Friedler and Y. Gilboa, Sci. Total Environ., 408, 2109 (2010); https://doi.org/10.1016/j.scitotenv.2010.01.051
- Y. Choi, T. Umebayashi and M. Yoshikawa, J. Mater. Sci., 39, 1837 (2004); https://doi.org/10.1023/B:JMSC.0000016198.73153.31
- T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, Appl. Catal. A Gen., 265, 115 (2004); https://doi.org/10.1016/j.apcata.2004.01.007
- P. Wang, D. Wang, H. Li, T. Xie, H. Wang and Z. Du, J. Colloid Interface Sci., 314, 337 (2007); https://doi.org/10.1016/j.jcis.2007.05.087
- A.S. Karakoti, S. Das, S. Thevuthasan and S. Seal, Angew. Chem. Int. Ed., 50, 1980 (2011); https://doi.org/10.1002/anie.201002969
- M. Bustamante-Torres, D. Romero-Fierro, B. Arcentales-Vera, S. Pardo and E. Bucio, Polymers, 13, 2998 (2021); https://doi.org/10.3390/polym13172998
- J.S. Suk, Q. Xu, N. Kim, J. Hanes and L.M. Ensign, Adv. Drug Deliv. Rev., 99, 28 (2016); https://doi.org/10.1016/j.addr.2015.09.012
- Z. Zheng, Q. Zhou, M. Li and P. Yin, Chem. Sci., 10, 7333 (2019); https://doi.org/10.1039/C9SC02779C
- X. Yan, D. Pan, Z. Li, Y. Liu, J. Zhang, G. Xu and M. Wu, Mater. Lett., 64, 1833 (2010); https://doi.org/10.1016/j.matlet.2010.05.051
- M. Zhang, J. Lei, Y. Shi, L. Zhang, Y. Ye, D. Li and C. Mu, RSC Adv., 6, 83366 (2016); https://doi.org/10.1039/C6RA12988A
- L.N. Costa, F.X. Nobre, A.O. Lobo and J.M.E. de Matos, Environ. Nanotechnol. Monit. Manag., 16, 100466 (2021); https://doi.org/10.1016/j.enmm.2021.100466
- M. Behpour and M. Chakeri, J. Nanostructures, 02, 227 (2012); https://doi.org/10.7508/jns.2012.02.011
- S. Rahim, M.S. Ghamsari and S. Radiman, Sci. Iran., 19, 948 (2012); https://doi.org/10.1016/j.scient.2012.03.009
- S. Sood, S.K. Mehta, A. Umar and S.K. Kansal, New J. Chem., 38, 3127 (2014); https://doi.org/10.1039/C4NJ00179F
- B. Subash, B. Krishnakumar, M. Swaminathan and M. Shanthi, Langmuir, 29, 939 (2013); https://doi.org/10.1021/la303842c
- A. Kathiravan and R. Renganathan, J. Colloid Interface Sci., 335, 196 (2009); https://doi.org/10.1016/j.jcis.2009.03.076
- K. Olurode, G.M. Neelgund, A. Oki and Z. Luo, Spectrochim. Acta A Mol. Biomol. Spectrosc., 89, 333 (2012); https://doi.org/10.1016/j.saa.2011.12.025
- J. Wei, L. Zhao, S. Peng, J. Shi, Z. Liu and W. Wen, J. Sol-Gel Sci. Technol., 47, 311 (2008); https://doi.org/10.1007/s10971-008-1787-z
- H.C. Choi, Y.M. Jung and S.B. Kim, Vib. Spectrosc., 37, 33 (2005); https://doi.org/10.1016/j.vibspec.2004.05.006
- A. Leon, P. Reuquen, C. Garin, R. Segura, P. Vargas, P. Zapata and P. Orihuela, Appl. Sci., 7, 49 (2017); https://doi.org/10.3390/app7010049
- W. Wang, C.-H. Lu, Y.-R. Ni, J.-B. Song, M.-X. Su and Z.-Z. Xu, Catal. Commun., 22, 19 (2012); https://doi.org/10.1016/j.catcom.2012.02.011
- J. Wang, L. Svoboda, Z. Nìmeèková, J. Henych, N. Licciardello, M. Sgarzi and G. Cuniberti, RSC Adv., 11, 13980 (2021); https://doi.org/10.1039/D0RA10403E
- Y. Li, Y. Wang, J. Kong, H. Jia and Z. Wang, Appl. Surf. Sci., 344, 176 (2015); https://doi.org/10.1016/j.apsusc.2015.03.085
- G. Ma, Y. Zhu, Z. Zhang and L. Li, Appl. Surf. Sci., 313, 817 (2014); https://doi.org/10.1016/j.apsusc.2014.06.079
References
R. Kumar, J. Travas-Sejdic and L.P. Padhye, Chem. Eng. J. Adv., 4, 100047 (2020); https://doi.org/10.1016/j.ceja.2020.100047
I.-Y. Jeon and J.-B. Baek, Materials, 3, 3654 (2010); https://doi.org/10.3390/ma3063654
V.V. Vodnik, J.V. Vukovic and J.M. Nedeljkovic, Colloid Polym. Sci., 287, 847 (2009); https://doi.org/10.1007/s00396-009-2039-7
C.I. Pearce, J.R. Lloyd and J.T. Guthrie, Dyes Pigments, 58, 179 (2003); https://doi.org/10.1016/S0143-7208(03)00064-0
B. Van Der Bruggen and C. Vandecasteele, Environ. Pollut., 122, 435 (2003); https://doi.org/10.1016/S0269-7491(02)00308-1
J. Hollender, S.G. Zimmermann, S. Koepke, M. Krauss, C.S. McArdell, C. Ort, H. Singer, U. von Gunten and H. Siegrist, Environ. Sci. Technol., 43, 7862 (2009); https://doi.org/10.1021/es9014629
C.Y. Hu, S.L. Lo and W.H. Kuan, Water Res., 37, 4513 (2003); https://doi.org/10.1016/S0043-1354(03)00378-6
M. Iram, C. Guo, Y. Guan, A. Ishfaq and H. Liu, J. Hazard. Mater., 181, 1039 (2010); https://doi.org/10.1016/j.jhazmat.2010.05.119
C. Vanlalhmingmawia, D. Tiwari and D.-J. Kim, Environ. Res., 218, 115007 (2023); https://doi.org/10.1016/j.envres.2022.115007
J. Zhang, Y. Chen, J. Liang and H. Xu, Environ. Eng. Res., 28, 220513 (2023); https://doi.org/10.4491/eer.2022.513
P.S. Saud, B. Pant, A.M. Alam, Z.K. Ghouri, M. Park and H.Y. Kim, Ceram. Int., 41, 11953 (2015); https://doi.org/10.1016/j.ceramint.2015.06.007
E. Friedler and Y. Gilboa, Sci. Total Environ., 408, 2109 (2010); https://doi.org/10.1016/j.scitotenv.2010.01.051
Y. Choi, T. Umebayashi and M. Yoshikawa, J. Mater. Sci., 39, 1837 (2004); https://doi.org/10.1023/B:JMSC.0000016198.73153.31
T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, Appl. Catal. A Gen., 265, 115 (2004); https://doi.org/10.1016/j.apcata.2004.01.007
P. Wang, D. Wang, H. Li, T. Xie, H. Wang and Z. Du, J. Colloid Interface Sci., 314, 337 (2007); https://doi.org/10.1016/j.jcis.2007.05.087
A.S. Karakoti, S. Das, S. Thevuthasan and S. Seal, Angew. Chem. Int. Ed., 50, 1980 (2011); https://doi.org/10.1002/anie.201002969
M. Bustamante-Torres, D. Romero-Fierro, B. Arcentales-Vera, S. Pardo and E. Bucio, Polymers, 13, 2998 (2021); https://doi.org/10.3390/polym13172998
J.S. Suk, Q. Xu, N. Kim, J. Hanes and L.M. Ensign, Adv. Drug Deliv. Rev., 99, 28 (2016); https://doi.org/10.1016/j.addr.2015.09.012
Z. Zheng, Q. Zhou, M. Li and P. Yin, Chem. Sci., 10, 7333 (2019); https://doi.org/10.1039/C9SC02779C
X. Yan, D. Pan, Z. Li, Y. Liu, J. Zhang, G. Xu and M. Wu, Mater. Lett., 64, 1833 (2010); https://doi.org/10.1016/j.matlet.2010.05.051
M. Zhang, J. Lei, Y. Shi, L. Zhang, Y. Ye, D. Li and C. Mu, RSC Adv., 6, 83366 (2016); https://doi.org/10.1039/C6RA12988A
L.N. Costa, F.X. Nobre, A.O. Lobo and J.M.E. de Matos, Environ. Nanotechnol. Monit. Manag., 16, 100466 (2021); https://doi.org/10.1016/j.enmm.2021.100466
M. Behpour and M. Chakeri, J. Nanostructures, 02, 227 (2012); https://doi.org/10.7508/jns.2012.02.011
S. Rahim, M.S. Ghamsari and S. Radiman, Sci. Iran., 19, 948 (2012); https://doi.org/10.1016/j.scient.2012.03.009
S. Sood, S.K. Mehta, A. Umar and S.K. Kansal, New J. Chem., 38, 3127 (2014); https://doi.org/10.1039/C4NJ00179F
B. Subash, B. Krishnakumar, M. Swaminathan and M. Shanthi, Langmuir, 29, 939 (2013); https://doi.org/10.1021/la303842c
A. Kathiravan and R. Renganathan, J. Colloid Interface Sci., 335, 196 (2009); https://doi.org/10.1016/j.jcis.2009.03.076
K. Olurode, G.M. Neelgund, A. Oki and Z. Luo, Spectrochim. Acta A Mol. Biomol. Spectrosc., 89, 333 (2012); https://doi.org/10.1016/j.saa.2011.12.025
J. Wei, L. Zhao, S. Peng, J. Shi, Z. Liu and W. Wen, J. Sol-Gel Sci. Technol., 47, 311 (2008); https://doi.org/10.1007/s10971-008-1787-z
H.C. Choi, Y.M. Jung and S.B. Kim, Vib. Spectrosc., 37, 33 (2005); https://doi.org/10.1016/j.vibspec.2004.05.006
A. Leon, P. Reuquen, C. Garin, R. Segura, P. Vargas, P. Zapata and P. Orihuela, Appl. Sci., 7, 49 (2017); https://doi.org/10.3390/app7010049
W. Wang, C.-H. Lu, Y.-R. Ni, J.-B. Song, M.-X. Su and Z.-Z. Xu, Catal. Commun., 22, 19 (2012); https://doi.org/10.1016/j.catcom.2012.02.011
J. Wang, L. Svoboda, Z. Nìmeèková, J. Henych, N. Licciardello, M. Sgarzi and G. Cuniberti, RSC Adv., 11, 13980 (2021); https://doi.org/10.1039/D0RA10403E
Y. Li, Y. Wang, J. Kong, H. Jia and Z. Wang, Appl. Surf. Sci., 344, 176 (2015); https://doi.org/10.1016/j.apsusc.2015.03.085
G. Ma, Y. Zhu, Z. Zhang and L. Li, Appl. Surf. Sci., 313, 817 (2014); https://doi.org/10.1016/j.apsusc.2014.06.079