Copyright (c) 2023 V. SATHYANARAYANAMOORTHI
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Theoretical Investigation of Decorated Novel 1,2-Di(4-pyridyl)-ethylene based Dye Sensitized Solar Cells (DSSC)
Corresponding Author(s) : V. SATHYANARAYANAMOORTHI
Asian Journal of Chemistry,
Vol. 35 No. 9 (2023): Vol 35 Issue 9, 2023
Abstract
Density functional theory (DFT) approaches are employed to investigate the performance of dyes and the influence of p-conjugation in dye-sensitized solar cells (DSSCs). In this investigation, five new 1,2-di(4-pyridyl)-ethylene based conjugated donor-π-acceptor organic dyes (D-π-A) exist. The spacer is a diphenylamine (DPA) group, while the diphenyl amine group serves as the component that donates
electrons in each system, the nitro/cyano group is used as an electron accepting group. An alternate methyl/ethyl group is employed as π-conjugated spacer in order to study the effect of the auxiliary donor group. Through performing DFT calculations with the B3LYP both the polarized split-valence 6-311++G (d,p) basis sets, an excitation energies, absorption spectra and emission spectra of each
molecule were examined. The polarizable continuum model (PCM) is utilized in studying these impact for solvent. The energies at which these dyes are LUMO and HOMO, which assure the favourable impact for electron injection and these dye regeneration process. The calculation of the HOMO-LUMO gap demonstrates good agreement when compared to spectral information. The light-harvesting
efficiency (LHE), electron injection free energy (ΔGinject), as well as oscillator strength (f) are computed and explained. The calculated open-circuit photovoltage values (Voc) and electron coupling constant (VRP) for the studied dye-sensitizers are also included in this study.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Strielkowski, L. Civín, E. Tarkhanova, M. Tvaronaviciene and Y. Petrenko, Energies, 14, 8240 (2021); https://doi.org/10.3390/en14248240
- N. Panwar, S. Kaushik and S. Kothari, Renew. Sustain. Energy Rev., 15, 1513 (2011); https://doi.org/10.1016/j.rser.2010.11.037
- M.A. Hasan and K. Sumathy, Renew. Sustain. Energy Rev., 14, 1845 (2010); https://doi.org/10.1016/j.rser.2010.03.011
- M. Gratzel, J. Photochem. Photobiol. Chem., 164, 3 (2004); https://doi.org/10.1016/j.jphotochem.2004.02.023
- J.M. Pearce, Futures, 34, 663 (2002); https://doi.org/10.1016/S0016-3287(02)00008-3
- H. Hoppe and N.S. Sariciftci, J. Mater. Res., 19, 1924 (2004); https://doi.org/10.1557/JMR.2004.0252
- S. Gunes, H. Neugebauer and N.S. Sariciftci, Chem. Rev., 107, 1324 (2007); https://doi.org/10.1021/cr050149z
- B. O’regan and M. Gratzel, Nature, 353, 737 (1991); https://doi.org/10.1038/353737a0
- F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, R. Humphry-Baker, X. Jing, P. Wang, S.M. Zakeeruddin and M. Grätzel, J. Am. Chem. Soc., 130, 10720 (2008); https://doi.org/10.1021/ja801942j
- K. Sharma, V. Sharma and S.S. Sharma, Nanoscale Res. Lett., 13, 381 (2018); https://doi.org/10.1186/s11671-018-2760-6
- J. Gong, J. Liang and K. Sumathy, Renew. Sustain. Energy Rev., 16, 5848 (2012); https://doi.org/10.1016/j.rser.2012.04.044
- B. Chen, S. Ma, F. Zapata, E.B. Lobkovsky and J. Yang, Inorg. Chem., 45, 5718 (2006); https://doi.org/10.1021/ic060437t
- D.N. Dybtsev, M.P. Yutkin, E.V. Peresypkina, A.V. Virovets, C. Serre, G. Férey and V.P. Fedin, Inorg. Chem., 46, 6843 (2007); https://doi.org/10.1021/ic7009226
- N.L. Toh, M. Nagarathinam and J.J. Vittal, Angew. Chem. Int. Ed., 44, 2237 (2005); https://doi.org/10.1002/anie.200462673
- T.K. Maji, K. Uemura, H.-C. Chang, R. Matsuda and S. Kitagawa, Angew. Chem. Int. Ed., 43, 3269 (2004); https://doi.org/10.1002/anie.200453923
- G.S. Papaefstathiou, Z. Zhong, L. Geng and L.R. MacGillivray, J. Am. Chem. Soc., 126, 9158 (2004); https://doi.org/10.1021/ja047819n
- M. Wang, Y.-R. Zheng, K. Ghosh and P.J. Stang, J. Am. Chem. Soc., 132, 6282 (2010); https://doi.org/10.1021/ja100889h
- L. Ma, O.R. Evans, B.M. Foxman and W. Lin, Inorg. Chem., 38, 5837 (1999); https://doi.org/10.1021/ic990429v
- T.M. Reineke, M. Eddaoudi, M. Fehr, D. Kelley and O.M. Yaghi, J. Am. Chem. Soc., 121, 1651 (1999); https://doi.org/10.1021/ja983577d
- Z.S. Bai, J. Xu, T. Okamura, M.-S. Chen, W.-Y. Sun and N. Ueyama, Dalton Trans., 14, 2528 (2009); https://doi.org/10.1039/b816205k
- S.V. Eliseeva and J.-C.G. Bünzli, New J. Chem., 35, 1165 (2011); https://doi.org/10.1039/c0nj00969e
- L. Sorace, C. Benelli and D. Gatteschi, Chem. Soc. Rev., 40, 3092 (2011); https://doi.org/10.1039/c0cs00185f
- S. Mohapatra, S. Adhikari, H. Riju and T.K. Maji, Inorg. Chem., 51, 4891 (2012); https://doi.org/10.1021/ic300237e
- S.I. Weissman, J. Chem. Phys., 10, 214 (1942); https://doi.org/10.1063/1.1723709
- G.A. Crosby, R.E. Whan and R.M. Alire, J. Chem. Phys., 34, 743 (1961); https://doi.org/10.1063/1.1731670
- L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro, M. Cavazzini and E. Tondello, Coord. Chem. Rev., 254, 487 (2010); https://doi.org/10.1016/j.ccr.2009.07.025
- P.A. Tanner and C.-K. Duan, Coord. Chem. Rev., 254, 3026 (2010); https://doi.org/10.1016/j.ccr.2010.05.009
- D. Parker and J.A.G. Williams, J. Chem. Soc., Dalton Trans., 3613 (1996); https://doi.org/10.1039/dt9960003613
- P. Gawryszewska, J. Sokolnicki and J. Legendziewicz, Coord. Chem. Rev., 249, 2489 (2005); https://doi.org/10.1016/j.ccr.2005.06.021
- N. Dannenbauer, P.R. Matthes, T.P. Scheller, J. Nitsch, S.H. Zottnick, M.S. Gernert, A. Steffen, C. Lambert and K. Müller-Buschbaum, Inorg. Chem., 55, 7396 (2016); https://doi.org/10.1021/acs.inorgchem.6b00447
- T.R. Hauser and D.W. Bradley, Anal. Chem., 38, 1529 (1966); https://doi.org/10.1021/ac60243a018
- E. Sawicki, T.R. Hauser, T.W. Stanley and W. Elbert, Anal. Chem., 33, 93 (1961); https://doi.org/10.1021/ac60169a028
- R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa and M.J. Tachiya, J. Phys. Chem. B, 108, 4818 (2004); https://doi.org/10.1021/jp031260g
- J.B. Asbury, Y.-Q. Wang, E. Hao, H.N. Ghosh and T. Lian, Res. Chem. Intermed., 27, 393 (2001); https://doi.org/10.1163/156856701104202255
- A. Hagfeldt and M. Graetzel, Chem. Rev., 95, 49 (1995); https://doi.org/10.1021/cr00033a003
- Z.-G. Zhang, J. Min, S. Zhang, J. Zhang, M. Zhang and Y. Li, Chem. Commun., 47, 9474 (2011); https://doi.org/10.1039/c1cc13477a
- J.O. Odey, H. Louis, J.A. Agwupuye, Y.L. Moshood, E.A. Bisong and O.I. Brown, J. Mol. Struct., 1241, 130615 (2021); https://doi.org/10.1016/j.molstruc.2021.130615
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian, Inc., Wallingford CT (2016).
- A.D. Becke, J. Chem. Phys., 98, 1372 (1993); https://doi.org/10.1063/1.464304
- A.D. Becke, Phys. Rev. A Gen. Phys., 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
- C. Lee, W. Yang and R.G. Parr, Rev. Bus., 37, 785 (1988).
- R.J. Magyar and S. Tretiak, J. Chem. Theory Comput., 3, 976 (2007); https://doi.org/10.1021/ct600282k
- T. Yanai, D.P. Tew and N.C. Handy, Chem. Phys. Lett., 393, 51 (2004); https://doi.org/10.1016/j.cplett.2004.06.011
- Y. Xue, L. An, Y. Zheng, L. Zhang, X. Gong, Y. Qian and Y. Liu, Comput. Theor. Chem., 981, 90 (2012); https://doi.org/10.1016/j.comptc.2011.11.050
- A.W. Lange, M.A. Rohrdanz and J.M. Herbert, J. Phys. Chem. B, 112, 6304 (2008); https://doi.org/10.1021/jp802058k
- M.A. Rohrdanz and J.M. Herbert, J. Chem. Phys., 129, 34107 (2008); https://doi.org/10.1063/1.2954017
- J. Toulouse, F. Colonna and A. Savin, J. Chem. Phys., 122, 14110 (2005); https://doi.org/10.1063/1.1824896
- J. Preat, J. Phys. Chem. C, 114, 16716 (2010); https://doi.org/10.1021/jp1050035
- B. Camino, M. De-La-Pierre and A.M. Ferrari, J. Mol. Struct., 1046, 116 (2013); https://doi.org/10.1016/j.molstruc.2013.04.010
- A. Irfan, R. Jin, A.G. Al-Sehemi and A.M. Asiri, Spectrochim. Acta A Mol. Biomol. Spectrosc., 110, 60 (2013); https://doi.org/10.1016/j.saa.2013.02.045
- A. Fitri, A.T. Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi and M. Bouachrine, Spectrochim. Acta A Mol. Biomol. Spectrosc., 124, 646 (2014); https://doi.org/10.1016/j.saa.2014.01.052
- X. Li, P. Song, D. Zhao and Y. Li, Materials, 13, 4834 (2020); https://doi.org/10.3390/ma13214834
- Y. Ooyama, M. Kanda, K. Uenaka and J. Ohshita, ChemPhysChem, 16, 3049 (2015); https://doi.org/10.1002/cphc.201500419
- K. Moneer, J. Glob. Pharma Technol., 12, 206 (2017).
- K. Kakiage, H. Osada, Y. Aoyama, T. Yano, K. Oya, S. Iwamoto, J. Fujisawa and M. Hanaya, Sci. Rep., 6, 35888 (2016); https://doi.org/10.1038/srep35888
- L. Etgar, G. Schuchardt, D. Costenaro, F. Carniato, S.M. Zakeeruddin, C. Bisio, M.K. Nazeeruddin, L. Marchese and M. Graetzel, J. Mater. Chem. A Mater. Energy Sustain., 1, 10142 (2013); https://doi.org/10.1039/c3ta11436h
- Z. Liu, L. Krückemeier, B. Krogmeier, B. Klingebiel, J.A. Márquez, S. Levcenko, S. Öz, S. Mathur, U. Rau, T. Unold and T. Kirchartz, ACS Energy Lett., 4, 110 (2019); https://doi.org/10.1021/acsenergylett.8b01906
- R.G. Pearson, Inorg. Chem., 27, 734 (1988); https://doi.org/10.1021/ic00277a030
- H. Wang, Y. Li, P. Song, F. Ma and Q. Wang, Mol. Phys., 114, 3518 (2016); https://doi.org/10.1080/00268976.2016.1244357
- W. Sang-aroon, S. Saekow and V. Amornkitbamrung, J. Photochem. Photobiol. Chem., 236, 35 (2012); https://doi.org/10.1016/j.jphotochem.2012.03.014
- A. Irfan, S. Muhammad, A.G. Al-Sehemi, M.S. Al-Assiri and A. Kalam, Int. J. Electrochem. Sci., 10, 3600 (2015); https://doi.org/10.1016/S1452-3981(23)06564-1
References
W. Strielkowski, L. Civín, E. Tarkhanova, M. Tvaronaviciene and Y. Petrenko, Energies, 14, 8240 (2021); https://doi.org/10.3390/en14248240
N. Panwar, S. Kaushik and S. Kothari, Renew. Sustain. Energy Rev., 15, 1513 (2011); https://doi.org/10.1016/j.rser.2010.11.037
M.A. Hasan and K. Sumathy, Renew. Sustain. Energy Rev., 14, 1845 (2010); https://doi.org/10.1016/j.rser.2010.03.011
M. Gratzel, J. Photochem. Photobiol. Chem., 164, 3 (2004); https://doi.org/10.1016/j.jphotochem.2004.02.023
J.M. Pearce, Futures, 34, 663 (2002); https://doi.org/10.1016/S0016-3287(02)00008-3
H. Hoppe and N.S. Sariciftci, J. Mater. Res., 19, 1924 (2004); https://doi.org/10.1557/JMR.2004.0252
S. Gunes, H. Neugebauer and N.S. Sariciftci, Chem. Rev., 107, 1324 (2007); https://doi.org/10.1021/cr050149z
B. O’regan and M. Gratzel, Nature, 353, 737 (1991); https://doi.org/10.1038/353737a0
F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, R. Humphry-Baker, X. Jing, P. Wang, S.M. Zakeeruddin and M. Grätzel, J. Am. Chem. Soc., 130, 10720 (2008); https://doi.org/10.1021/ja801942j
K. Sharma, V. Sharma and S.S. Sharma, Nanoscale Res. Lett., 13, 381 (2018); https://doi.org/10.1186/s11671-018-2760-6
J. Gong, J. Liang and K. Sumathy, Renew. Sustain. Energy Rev., 16, 5848 (2012); https://doi.org/10.1016/j.rser.2012.04.044
B. Chen, S. Ma, F. Zapata, E.B. Lobkovsky and J. Yang, Inorg. Chem., 45, 5718 (2006); https://doi.org/10.1021/ic060437t
D.N. Dybtsev, M.P. Yutkin, E.V. Peresypkina, A.V. Virovets, C. Serre, G. Férey and V.P. Fedin, Inorg. Chem., 46, 6843 (2007); https://doi.org/10.1021/ic7009226
N.L. Toh, M. Nagarathinam and J.J. Vittal, Angew. Chem. Int. Ed., 44, 2237 (2005); https://doi.org/10.1002/anie.200462673
T.K. Maji, K. Uemura, H.-C. Chang, R. Matsuda and S. Kitagawa, Angew. Chem. Int. Ed., 43, 3269 (2004); https://doi.org/10.1002/anie.200453923
G.S. Papaefstathiou, Z. Zhong, L. Geng and L.R. MacGillivray, J. Am. Chem. Soc., 126, 9158 (2004); https://doi.org/10.1021/ja047819n
M. Wang, Y.-R. Zheng, K. Ghosh and P.J. Stang, J. Am. Chem. Soc., 132, 6282 (2010); https://doi.org/10.1021/ja100889h
L. Ma, O.R. Evans, B.M. Foxman and W. Lin, Inorg. Chem., 38, 5837 (1999); https://doi.org/10.1021/ic990429v
T.M. Reineke, M. Eddaoudi, M. Fehr, D. Kelley and O.M. Yaghi, J. Am. Chem. Soc., 121, 1651 (1999); https://doi.org/10.1021/ja983577d
Z.S. Bai, J. Xu, T. Okamura, M.-S. Chen, W.-Y. Sun and N. Ueyama, Dalton Trans., 14, 2528 (2009); https://doi.org/10.1039/b816205k
S.V. Eliseeva and J.-C.G. Bünzli, New J. Chem., 35, 1165 (2011); https://doi.org/10.1039/c0nj00969e
L. Sorace, C. Benelli and D. Gatteschi, Chem. Soc. Rev., 40, 3092 (2011); https://doi.org/10.1039/c0cs00185f
S. Mohapatra, S. Adhikari, H. Riju and T.K. Maji, Inorg. Chem., 51, 4891 (2012); https://doi.org/10.1021/ic300237e
S.I. Weissman, J. Chem. Phys., 10, 214 (1942); https://doi.org/10.1063/1.1723709
G.A. Crosby, R.E. Whan and R.M. Alire, J. Chem. Phys., 34, 743 (1961); https://doi.org/10.1063/1.1731670
L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro, M. Cavazzini and E. Tondello, Coord. Chem. Rev., 254, 487 (2010); https://doi.org/10.1016/j.ccr.2009.07.025
P.A. Tanner and C.-K. Duan, Coord. Chem. Rev., 254, 3026 (2010); https://doi.org/10.1016/j.ccr.2010.05.009
D. Parker and J.A.G. Williams, J. Chem. Soc., Dalton Trans., 3613 (1996); https://doi.org/10.1039/dt9960003613
P. Gawryszewska, J. Sokolnicki and J. Legendziewicz, Coord. Chem. Rev., 249, 2489 (2005); https://doi.org/10.1016/j.ccr.2005.06.021
N. Dannenbauer, P.R. Matthes, T.P. Scheller, J. Nitsch, S.H. Zottnick, M.S. Gernert, A. Steffen, C. Lambert and K. Müller-Buschbaum, Inorg. Chem., 55, 7396 (2016); https://doi.org/10.1021/acs.inorgchem.6b00447
T.R. Hauser and D.W. Bradley, Anal. Chem., 38, 1529 (1966); https://doi.org/10.1021/ac60243a018
E. Sawicki, T.R. Hauser, T.W. Stanley and W. Elbert, Anal. Chem., 33, 93 (1961); https://doi.org/10.1021/ac60169a028
R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa and M.J. Tachiya, J. Phys. Chem. B, 108, 4818 (2004); https://doi.org/10.1021/jp031260g
J.B. Asbury, Y.-Q. Wang, E. Hao, H.N. Ghosh and T. Lian, Res. Chem. Intermed., 27, 393 (2001); https://doi.org/10.1163/156856701104202255
A. Hagfeldt and M. Graetzel, Chem. Rev., 95, 49 (1995); https://doi.org/10.1021/cr00033a003
Z.-G. Zhang, J. Min, S. Zhang, J. Zhang, M. Zhang and Y. Li, Chem. Commun., 47, 9474 (2011); https://doi.org/10.1039/c1cc13477a
J.O. Odey, H. Louis, J.A. Agwupuye, Y.L. Moshood, E.A. Bisong and O.I. Brown, J. Mol. Struct., 1241, 130615 (2021); https://doi.org/10.1016/j.molstruc.2021.130615
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian, Inc., Wallingford CT (2016).
A.D. Becke, J. Chem. Phys., 98, 1372 (1993); https://doi.org/10.1063/1.464304
A.D. Becke, Phys. Rev. A Gen. Phys., 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
C. Lee, W. Yang and R.G. Parr, Rev. Bus., 37, 785 (1988).
R.J. Magyar and S. Tretiak, J. Chem. Theory Comput., 3, 976 (2007); https://doi.org/10.1021/ct600282k
T. Yanai, D.P. Tew and N.C. Handy, Chem. Phys. Lett., 393, 51 (2004); https://doi.org/10.1016/j.cplett.2004.06.011
Y. Xue, L. An, Y. Zheng, L. Zhang, X. Gong, Y. Qian and Y. Liu, Comput. Theor. Chem., 981, 90 (2012); https://doi.org/10.1016/j.comptc.2011.11.050
A.W. Lange, M.A. Rohrdanz and J.M. Herbert, J. Phys. Chem. B, 112, 6304 (2008); https://doi.org/10.1021/jp802058k
M.A. Rohrdanz and J.M. Herbert, J. Chem. Phys., 129, 34107 (2008); https://doi.org/10.1063/1.2954017
J. Toulouse, F. Colonna and A. Savin, J. Chem. Phys., 122, 14110 (2005); https://doi.org/10.1063/1.1824896
J. Preat, J. Phys. Chem. C, 114, 16716 (2010); https://doi.org/10.1021/jp1050035
B. Camino, M. De-La-Pierre and A.M. Ferrari, J. Mol. Struct., 1046, 116 (2013); https://doi.org/10.1016/j.molstruc.2013.04.010
A. Irfan, R. Jin, A.G. Al-Sehemi and A.M. Asiri, Spectrochim. Acta A Mol. Biomol. Spectrosc., 110, 60 (2013); https://doi.org/10.1016/j.saa.2013.02.045
A. Fitri, A.T. Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi and M. Bouachrine, Spectrochim. Acta A Mol. Biomol. Spectrosc., 124, 646 (2014); https://doi.org/10.1016/j.saa.2014.01.052
X. Li, P. Song, D. Zhao and Y. Li, Materials, 13, 4834 (2020); https://doi.org/10.3390/ma13214834
Y. Ooyama, M. Kanda, K. Uenaka and J. Ohshita, ChemPhysChem, 16, 3049 (2015); https://doi.org/10.1002/cphc.201500419
K. Moneer, J. Glob. Pharma Technol., 12, 206 (2017).
K. Kakiage, H. Osada, Y. Aoyama, T. Yano, K. Oya, S. Iwamoto, J. Fujisawa and M. Hanaya, Sci. Rep., 6, 35888 (2016); https://doi.org/10.1038/srep35888
L. Etgar, G. Schuchardt, D. Costenaro, F. Carniato, S.M. Zakeeruddin, C. Bisio, M.K. Nazeeruddin, L. Marchese and M. Graetzel, J. Mater. Chem. A Mater. Energy Sustain., 1, 10142 (2013); https://doi.org/10.1039/c3ta11436h
Z. Liu, L. Krückemeier, B. Krogmeier, B. Klingebiel, J.A. Márquez, S. Levcenko, S. Öz, S. Mathur, U. Rau, T. Unold and T. Kirchartz, ACS Energy Lett., 4, 110 (2019); https://doi.org/10.1021/acsenergylett.8b01906
R.G. Pearson, Inorg. Chem., 27, 734 (1988); https://doi.org/10.1021/ic00277a030
H. Wang, Y. Li, P. Song, F. Ma and Q. Wang, Mol. Phys., 114, 3518 (2016); https://doi.org/10.1080/00268976.2016.1244357
W. Sang-aroon, S. Saekow and V. Amornkitbamrung, J. Photochem. Photobiol. Chem., 236, 35 (2012); https://doi.org/10.1016/j.jphotochem.2012.03.014
A. Irfan, S. Muhammad, A.G. Al-Sehemi, M.S. Al-Assiri and A. Kalam, Int. J. Electrochem. Sci., 10, 3600 (2015); https://doi.org/10.1016/S1452-3981(23)06564-1