Copyright (c) 2023 Viswanath R. N., Anil Kumar Behara, Tom Mathews
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of H2O2 Concentration on Morphology, Reflectivity and Wettability of Si Nanowalls Prepared by Metal Assisted Chemical Etching
Corresponding Author(s) : Viswanath R. N.
Asian Journal of Chemistry,
Vol. 35 No. 9 (2023): Vol 35 Issue 9, 2023
Abstract
A facile and low cost method, metal assisted chemical etching was used to prepare silicon (Si) nanowalls atop the Si wafer, where the effect of etchant solution concentration (H2O2 concentration) on the morphology, reflectivity and wettability of the fabricated Si nanowalls is investigated. The morphological and structural studies by scanning and transmission electron microscopy revealed the Si nanowalls prepared at both low and high H2O2 concentration are smooth, nonporous and single crystalline, where the increase of H2O2 concentration only changes the morphology from isolated nanowall structure to agglomerated nanowall structure. The height of nanowalls also increases with increase in H2O2 concentration and follows a linear behaviour with an etching rate of 5697 nm/M. The reflectance study shows that the reflectance is extremely low over broad wavelength range (300-1100 nm) for Si nanowalls, compared to that of planar Si wafer. The increase of H2O2 concentration significantly changes the wavelength dependence of the reflectance spectrum. The wettability studies show that SiNWs prepared at low H2O2 concentration exhibit hydrophobicity in contrast to the hydrophilicity of planar Si wafer, where the increase of H2O2 concentration to very high value changes the hydrophobicity of SiNWs to hydrophilicity as similar to planar Si wafer.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Zhuang, Q. Peng and Y. Li, Chem. Soc. Rev., 40, 5492 (2011); https://doi.org/10.1039/C1CS15095B
- F.J. Wendisch, M. Rey, N. Vogel and G.R. Bourret, Chem. Mater., 32, 9425 (2020); https://doi.org/10.1021/acs.chemmater.0c03593
- R. Smith, W. Duan, J. Quarterman, A. Morris, C. Collie, M. Black, F. Toor and A.K. Salem, Adv. Mater. Technol., 4, 1800349 (2019); https://doi.org/10.1002/admt.201800349
- A.A. Leonardi, M.J.L. Faro and A. Irrera, Nanomaterials, 11, 383 (2021); https://doi.org/10.3390/nano11020383
- H. Alhmoud, D. Brodoceanu, R. Elnathan, T. Kraus and N.H. Voelcker, Prog. Mater. Sci., 116, 100636 (2021); https://doi.org/10.1016/j.pmatsci.2019.100636
- A. Matsumoto, M. Eguchi, K. Iwamoto, Y. Shimada, K. Furukawa, H. Son and S. Yae, RSC Adv., 10, 253 (2020); https://doi.org/10.1039/C9RA08728A
- A.K. Behera, C. Lakshmanan, R. Viswanath, C. Poddar and T. Mathews, Bull. Mater. Sci., 43, 291 (2020); https://doi.org/10.1007/s12034-020-02272-7
- K. Kim, J.K. Lee, S.J. Han and S. Lee, Appl. Sci., 10, 1146 (2020); https://doi.org/10.3390/app10031146
- M.H. Kafshgari, N.H. Voelcker and F.J. Harding, Nanomedicine, 10, 2553 (2015); https://doi.org/10.2217/nnm.15.91
- A.K. Behera, R. Viswanath, C. Lakshmanan, K. Madapu, M. Kamruddin and T. Mathews, Micropor. Mesopor. Mater., 273, 99 (2019); https://doi.org/10.1016/j.micromeso.2018.06.052
- A.A. Leonardi, M.J. Lo Faro and A. Irrera, Nanomaterials, 10, 966 (2020); https://doi.org/10.3390/nano10050966
- A.K. Behera, R. Viswanath, C. Lakshmanan, S. Polaki, R. Sarguna and T. Mathews, AIP Conf. Proc., 1942, 050062 (2018); https://doi.org/10.1063/1.5028693
- M.Y. Arafat, M.A. Islam, A.W.B. Mahmood, F. Abdullah, M. Nur-E-Alam, T.S. Kiong and N. Amin, Sustainability, 13, 10766 (2021); https://doi.org/10.3390/su131910766
- A.K. Behera, R. Viswanath, C. Lakshmanan, T. Mathews and M. Kamruddin, Nano-Structures Nano-Objects, 21, 100424 (2020); https://doi.org/10.1016/j.nanoso.2020.100424
- R. Venkatesan, J. Mayandi, J.M. Pearce and V. Venkatachalapathy, J. Mater. Sci. Mater. Electron., 30, 8676 (2019); https://doi.org/10.1007/s10854-019-01191-6
- A.M. Gouda, N.K. Allam and M.A. Swillam, RSC Adv., 7, 26974 (2017); https://doi.org/10.1039/C7RA03568C
- F. Toor, J.B. Miller, L.M. Davidson, W. Duan, M.P. Jura, J. Yim, J. Forziati and M.R. Black, Nanoscale, 8, 15448 (2016); https://doi.org/10.1039/C6NR04506E
- Z. Fan, D. Cui, Z. Zhang, Z. Zhao, H. Chen, Y. Fan, P. Li, Z. Zhang, C. Xue and S. Yan, Nanomaterials, 11, 41 (2020); https://doi.org/10.3390/nano11010041
- S.R. Marthi, S. Sekhri and N. Ravindra, J. Miner. Met. Mater. Soc., 67, 2154 (2015); https://doi.org/10.1007/s11837-015-1527-0
- H.D. Omar, M.R. Hashim and M.Z. Pakhuruddin, Opt. Laser Technol., 136, 106765 (2021); https://doi.org/10.1016/j.optlastec.2020.106765
- J.Y.-H. Chai, B.T. Wong and S. Juodkazis, Mater. Today Energy, 18, 100539 (2020); https://doi.org/10.1016/j.mtener.2020.100539
- A. Gouda, M. Elsayed, A. Khalifa, Y. Ismail and M.A. Swillam, Opt. Lett., 41, 3575 (2016); https://doi.org/10.1364/OL.41.003575
- L. Rosales and J.W. González, Nanoscale Res. Lett., 8, 1 (2013); https://doi.org/10.1186/1556-276X-8-1
- B. Moumni and A.B. Jaballah, Appl. Surf. Sci., 425, 1 (2017); https://doi.org/10.1016/j.apsusc.2017.06.110
- Y. Liu, G. Ji, J. Wang, X. Liang, Z. Zuo and Y. Shi, Nanoscale Res. Lett., 7, 663 (2012); https://doi.org/10.1186/1556-276X-7-663
- M. Naffeti, P.A. Postigo, R. Chtourou and M.A. Zaïbi, Nanomaterials, 10, 404 (2020); https://doi.org/10.3390/nano10030404
- A.S. Togonal, L. He, P. Roca i Cabarrocas and Rusli, Langmuir, 30, 10290 (2014); https://doi.org/10.1021/la501768f
- A.K. Behera, R. Viswanath, N. Sharma, P. Ajikumar, S.T. Sundari and T. Mathews, Nano-Structures Nano-Objects, 29, 100833 (2022); https://doi.org/10.1016/j.nanoso.2021.100833
- H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita and M. Yamaguchi, Prog. Photovolt. Res. Appl., 15, 415 (2007); https://doi.org/10.1002/pip.754
- F.-Q. Zhang, K.-Q. Peng, R.-N. Sun, Y. Hu and S.-T. Lee, Nanotechnology, 26, 375401 (2015); https://doi.org/10.1088/0957-4484/26/37/375401
References
Z. Zhuang, Q. Peng and Y. Li, Chem. Soc. Rev., 40, 5492 (2011); https://doi.org/10.1039/C1CS15095B
F.J. Wendisch, M. Rey, N. Vogel and G.R. Bourret, Chem. Mater., 32, 9425 (2020); https://doi.org/10.1021/acs.chemmater.0c03593
R. Smith, W. Duan, J. Quarterman, A. Morris, C. Collie, M. Black, F. Toor and A.K. Salem, Adv. Mater. Technol., 4, 1800349 (2019); https://doi.org/10.1002/admt.201800349
A.A. Leonardi, M.J.L. Faro and A. Irrera, Nanomaterials, 11, 383 (2021); https://doi.org/10.3390/nano11020383
H. Alhmoud, D. Brodoceanu, R. Elnathan, T. Kraus and N.H. Voelcker, Prog. Mater. Sci., 116, 100636 (2021); https://doi.org/10.1016/j.pmatsci.2019.100636
A. Matsumoto, M. Eguchi, K. Iwamoto, Y. Shimada, K. Furukawa, H. Son and S. Yae, RSC Adv., 10, 253 (2020); https://doi.org/10.1039/C9RA08728A
A.K. Behera, C. Lakshmanan, R. Viswanath, C. Poddar and T. Mathews, Bull. Mater. Sci., 43, 291 (2020); https://doi.org/10.1007/s12034-020-02272-7
K. Kim, J.K. Lee, S.J. Han and S. Lee, Appl. Sci., 10, 1146 (2020); https://doi.org/10.3390/app10031146
M.H. Kafshgari, N.H. Voelcker and F.J. Harding, Nanomedicine, 10, 2553 (2015); https://doi.org/10.2217/nnm.15.91
A.K. Behera, R. Viswanath, C. Lakshmanan, K. Madapu, M. Kamruddin and T. Mathews, Micropor. Mesopor. Mater., 273, 99 (2019); https://doi.org/10.1016/j.micromeso.2018.06.052
A.A. Leonardi, M.J. Lo Faro and A. Irrera, Nanomaterials, 10, 966 (2020); https://doi.org/10.3390/nano10050966
A.K. Behera, R. Viswanath, C. Lakshmanan, S. Polaki, R. Sarguna and T. Mathews, AIP Conf. Proc., 1942, 050062 (2018); https://doi.org/10.1063/1.5028693
M.Y. Arafat, M.A. Islam, A.W.B. Mahmood, F. Abdullah, M. Nur-E-Alam, T.S. Kiong and N. Amin, Sustainability, 13, 10766 (2021); https://doi.org/10.3390/su131910766
A.K. Behera, R. Viswanath, C. Lakshmanan, T. Mathews and M. Kamruddin, Nano-Structures Nano-Objects, 21, 100424 (2020); https://doi.org/10.1016/j.nanoso.2020.100424
R. Venkatesan, J. Mayandi, J.M. Pearce and V. Venkatachalapathy, J. Mater. Sci. Mater. Electron., 30, 8676 (2019); https://doi.org/10.1007/s10854-019-01191-6
A.M. Gouda, N.K. Allam and M.A. Swillam, RSC Adv., 7, 26974 (2017); https://doi.org/10.1039/C7RA03568C
F. Toor, J.B. Miller, L.M. Davidson, W. Duan, M.P. Jura, J. Yim, J. Forziati and M.R. Black, Nanoscale, 8, 15448 (2016); https://doi.org/10.1039/C6NR04506E
Z. Fan, D. Cui, Z. Zhang, Z. Zhao, H. Chen, Y. Fan, P. Li, Z. Zhang, C. Xue and S. Yan, Nanomaterials, 11, 41 (2020); https://doi.org/10.3390/nano11010041
S.R. Marthi, S. Sekhri and N. Ravindra, J. Miner. Met. Mater. Soc., 67, 2154 (2015); https://doi.org/10.1007/s11837-015-1527-0
H.D. Omar, M.R. Hashim and M.Z. Pakhuruddin, Opt. Laser Technol., 136, 106765 (2021); https://doi.org/10.1016/j.optlastec.2020.106765
J.Y.-H. Chai, B.T. Wong and S. Juodkazis, Mater. Today Energy, 18, 100539 (2020); https://doi.org/10.1016/j.mtener.2020.100539
A. Gouda, M. Elsayed, A. Khalifa, Y. Ismail and M.A. Swillam, Opt. Lett., 41, 3575 (2016); https://doi.org/10.1364/OL.41.003575
L. Rosales and J.W. González, Nanoscale Res. Lett., 8, 1 (2013); https://doi.org/10.1186/1556-276X-8-1
B. Moumni and A.B. Jaballah, Appl. Surf. Sci., 425, 1 (2017); https://doi.org/10.1016/j.apsusc.2017.06.110
Y. Liu, G. Ji, J. Wang, X. Liang, Z. Zuo and Y. Shi, Nanoscale Res. Lett., 7, 663 (2012); https://doi.org/10.1186/1556-276X-7-663
M. Naffeti, P.A. Postigo, R. Chtourou and M.A. Zaïbi, Nanomaterials, 10, 404 (2020); https://doi.org/10.3390/nano10030404
A.S. Togonal, L. He, P. Roca i Cabarrocas and Rusli, Langmuir, 30, 10290 (2014); https://doi.org/10.1021/la501768f
A.K. Behera, R. Viswanath, N. Sharma, P. Ajikumar, S.T. Sundari and T. Mathews, Nano-Structures Nano-Objects, 29, 100833 (2022); https://doi.org/10.1016/j.nanoso.2021.100833
H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita and M. Yamaguchi, Prog. Photovolt. Res. Appl., 15, 415 (2007); https://doi.org/10.1002/pip.754
F.-Q. Zhang, K.-Q. Peng, R.-N. Sun, Y. Hu and S.-T. Lee, Nanotechnology, 26, 375401 (2015); https://doi.org/10.1088/0957-4484/26/37/375401