Copyright (c) 2023 Rajrani Gulia, Dr. Vikas Sangwan, Dr. Anshul Singh
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Spectral Characterization and Biological Evaluation of Glutaric acid based Macrocyclic Complexes
Corresponding Author(s) : Dr. Anshul Singh
Asian Journal of Chemistry,
Vol. 35 No. 9 (2023): Vol 35 Issue 9, 2023
Abstract
In the presence of divalent transition metal ions in their chloride forms, glutaric acid and o-phenylenediamine were used to design and synthesize a unique series of macrocyclic complexes. The UV-Visible, IR, ESR, and ESI-MS spectroscopy methods were used to analyze these newly designed complexes. In order to evaluate their thermal behavior, TGA analysis was employed. The intended general formula for the produced complexes was [M(L)X2] (L = ligand, X = Cl- and M = Co2+, Ni2+ and Cu2+). The central metal ions are surrounded by octahedral environment. These macrocyclic complexes were tested for their antimicrobial effectiveness against the selected bacterial strains (Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli), as well as fungi strains (Aspergillus niger and Candida albicans) and their efficacy was compared to that of standard drugs Streptomycin and Itraconazole respectively. Moreover, the antioxidant activity of the macrocyclic complexes were also assessed using the DPPH assay.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.F. Feng, Y.S. Shi, L. Zhang, R.G. Shi, W. Huang and R.Y. Wang, Sci. Rep., 7, 15881 (2017); https://doi.org/10.1038/s41598-017-15898-1
- T. Joshi, B. Graham and L. Spiccia, Acc. Chem. Res., 48, 2366 (2015); https://doi.org/10.1021/acs.accounts.5b00142
- M. Aidi, H. Keypour, A. Shooshtari, M. Bayat, L. Hosseinzadeh, H.A. Rudbari and R.W. Gable, Inorg. Chim. Acta, 490, 294 (2019); https://doi.org/10.1016/j.ica.2018.12.046
- N. Sharma, D. Kumar, R. Shrivastava, S. Shrivastava and K. Kant Awasthi, Mater. Today Proc., 42, 1760 (2021); https://doi.org/10.1016/j.matpr.2020.12.1225
- R.K. Gautam, C.P. Singh and D.P. Rao, Biointerface Res. Appl. Chem., 12, 1352 (2022); https://doi.org/10.33263/BRIAC121.13521364
- L. Dey, S. Rabi, D. Palit, S.K.S. Hazari, Z.A. Begum, I.M.M. Rahman and T.G. Roy, J. Mol. Struct., 1240, 130579 (2021); https://doi.org/10.1016/j.molstruc.2021.130579
- S.J. Dorazio, A.O. Olatunde, P.B. Tsitovich and J.R. Morrow, J. Biol. Inorg. Chem., 19, 191 (2014); https://doi.org/10.1007/s00775-013-1059-4
- R.D. Hancock and G.J. McDougall, Adv. Mol. Relax. Interact. Process., 18, 99 (1980); https://doi.org/10.1016/0378-4487(80)80030-6
- A. Yepremyan, M.A. Mekhail, B.P. Niebuhr, K. Pota, N. Sadagopan, T.M. Schwartz and K.N. Green, J. Org. Chem., 85, 4988 (2020); https://doi.org/10.1021/acs.joc.0c00188
- M. Kempa, P. Kozub, J. Kimball, M. Rojkiewicz, P. Kus, Z. Gryczynski and A. Ratuszna, Spectrochim. Acta A Mol. Biomol. Spectrosc., 146, 249 (2015); https://doi.org/10.1016/j.saa.2015.03.076
- S.M. Brewer, K.R. Wilson, D.G. Jones, E.W. Reinheimer, S.J. Archibald, T.J. Prior, M.A. Ayala, A.L. Foster, T.J. Hubin and K.N. Green, Inorg. Chem., 57, 8890 (2018); https://doi.org/10.1021/acs.inorgchem.8b00777
- K. Shalabi, O.A. El-Gammal and Y.M. Abdallah, Colloids Surf. A Physicochem. Eng. Asp., 609, 125653 (2021); https://doi.org/10.1016/j.colsurfa.2020.125653
- M. Shakir, N. Bano, M.A. Rauf and M. Owais, Chem. Sci. J., 129, 1905 (2017); https://doi.org/10.1007/s12039-017-1398-8
- H.A. El-Boraey and O.A. EL-Gammal, Open Chem. J., 5, 51 (2018); https://doi.org/10.2174/1874842201805010051
- M.L. Grieve, P.R.W.J. Davey, C.M. Forsyth and B.M. Paterson, Molecules, 26, 3646 (2021); https://doi.org/10.3390/molecules26123646
- S.G. Shankarwar, B.B. Nagolkar, V.A. Shelke and T.K. Chondhekar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 145, 188 (2015); https://doi.org/10.1016/j.saa.2015.02.006
- P. Rajakkani, A. Alagarraj and S.A.G. Thangavelu, Inorg. Chem. Commun., 134, 108989 (2021); https://doi.org/10.1016/j.inoche.2021.108989
- D. Kaleeswaran and R. Murugavel, Chem. Sci. J., 130, 1 (2018); https://doi.org/10.1007/s12039-017-1403-2
- L. Koziol, C.A. Valdez, S.E. Baker, E.Y. Lau, W.C. Floyd III, S.E. Wong, J.H. Satcher Jr., F.C. Lightstone and R.D. Aines, Inorg. Chem., 51, 6803 (2012); https://doi.org/10.1021/ic300526b
- W. Ye, D.M. Ho, S. Friedle, T.D. Palluccio and E.V. Rybak-Akimova, Inorg. Chem., 51, 5006 (2012); https://doi.org/10.1021/ic202435r
- M.G. Savelieff, G. Nam, J. Kang, H.J. Lee, M. Lee and M.H. Lim, Chem. Rev., 119, 1221 (2019); https://doi.org/10.1021/acs.chemrev.8b00138
- A. Gautam, J. Mol. Struct., 1260, 132740 (2022); https://doi.org/10.1016/j.molstruc.2022.132740
- T.A. Lönnberg, M. Helkearo, A. Jancso and T. Gajda, Dalton Trans., 41, 3328 (2012); https://doi.org/10.1039/c2dt10193a
- J. Li, R. Liu, J. Jiang, X. Liang, G. Huang, D. Yang, H. Chen, L. Pan and Z. Ma, J. Inorg. Biochem., 210, 111165 (2020); https://doi.org/10.1016/j.jinorgbio.2020.111165
- S. Chandra and Ruchi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 103, 338 (2013); https://doi.org/10.1016/j.saa.2012.10.065
- O.A. El-Gammal, A.F. Al-Hossainy and S.A. El-Brashy, J. Mol. Struct., 1165, 177 (2018); https://doi.org/10.1016/j.molstruc.2018.03.057
- N. Fahmi, M. Upadhyay, N. Sharma and S. Belwal, J. Chem. Res., 44, 336 (2020); https://doi.org/10.1177/1747519819893885
- C.I. Yeo, E.R.T. Tiekink and J. Chew, Inorganics, 9, 48 (2021); https://doi.org/10.3390/inorganics9060048
- Z. You, X. Ran, Y. Dai and Y. Ran, J. Mycol. Med., 28, 492 (2018); https://doi.org/10.1016/j.mycmed.2018.03.007
- T.O. Ajiboye, B.O. Oluwarinde, P.K. Montso, C.N. Ateba and D.C. Onwudiwe, Results Chem., 3, 100241 (2021); https://doi.org/10.1016/j.rechem.2021.100241
- J.-S. Lee, I.-H. Song, P.B. Shinde and S.B. Nimse, Antioxidants, 9, 859 (2020); https://doi.org/10.3390/antiox9090859
- C. Dileep, M. Abdoh, M. Chakravarthy, K. Mohana and M. Sridhar, Acta Crystallogr. Sect. E Struct. Rep. Online, 68, 02972 (2012); https://doi.org/10.1107/S1600536812039426
- M.H. Abo-Ghalia, G.O. Moustafa, A.E.-G.E. Amr, A.M. Naglah, E.A. Elsayed and A.H. Bakheit, Molecules, 25, 1253 (2020); https://doi.org/10.3390/molecules25051253
- I. Masih, N. Fahmi and Rajkumar, J. Enzyme Inhib. Med. Chem., 28, 33 (2013); https://doi.org/10.3109/14756366.2011.625022
- O.H.S. Al-Obaidi and A.R. Al-Hiti, Am. Chem. Sci. J., 2, 202 (2012); https://doi.org/10.9734/ACSJ/2012/1063
- S.K. Das Gupta, S. Rabi, D. Ghosh, F. Yasmin, B.K. Dey, S. Dey and T.G. Roy, Chem. Sci. J., 133, 7 (2021); https://doi.org/10.1007/s12039-020-01861-7
- A. Singh and A. Chaudhary, Silicon, 11, 1107 (2019); https://doi.org/10.1007/s12633-018-9971-4
- J.H. Pandya, M. Travadi, R.N. Jadeja, R.N. Patel and V.K. Gupta, J. Indian Chem. Soc., 99, 100403 (2022); https://doi.org/10.1016/j.jics.2022.100403
- K. Sharma, D.P. Singh and V. Kumar, Indian J. Chem. Technol., 24, 534 (2017).
- P. Rathi and D.P. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 136, 381 (2015); https://doi.org/10.1016/j.saa.2014.09.044
- A. Rajak, A. Srivastava, S.C. Shrivastava, R.S. Chauhan, U.S. Patel and S. Srivastava, Orient. J. Chem., 37, 763 (2021); https://doi.org/10.13005/ojc/370401
- D.P. Singh, K. Kumar, S.S. Dhiman and J. Sharma, J. Enzyme Inhib. Med. Chem., 24, 795 (2009); https://doi.org/10.1080/14756360802397179
- S.A. Zarei, A.A. Khandar, M. Khatamian, S.A. Hosseini-Yazdi, I. Dechamps, E. Guillon and M. Piltan, Inorg. Chim. Acta, 394, 348 (2013); https://doi.org/10.1016/j.ica.2012.08.017
- M. Tyagi, S. Chandra and P. Tyagi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 1 (2014); https://doi.org/10.1016/j.saa.2013.07.074
- N. Fahmi, S. Sharma, R. Kumar and R.V. Singh, Chem. Sci. Rev. Lett., 3, 488 (2014).
- O.P. Sharma and T.K. Bhat, Food Chem., 113, 1202 (2009); https://doi.org/10.1016/j.foodchem.2008.08.008
References
G.F. Feng, Y.S. Shi, L. Zhang, R.G. Shi, W. Huang and R.Y. Wang, Sci. Rep., 7, 15881 (2017); https://doi.org/10.1038/s41598-017-15898-1
T. Joshi, B. Graham and L. Spiccia, Acc. Chem. Res., 48, 2366 (2015); https://doi.org/10.1021/acs.accounts.5b00142
M. Aidi, H. Keypour, A. Shooshtari, M. Bayat, L. Hosseinzadeh, H.A. Rudbari and R.W. Gable, Inorg. Chim. Acta, 490, 294 (2019); https://doi.org/10.1016/j.ica.2018.12.046
N. Sharma, D. Kumar, R. Shrivastava, S. Shrivastava and K. Kant Awasthi, Mater. Today Proc., 42, 1760 (2021); https://doi.org/10.1016/j.matpr.2020.12.1225
R.K. Gautam, C.P. Singh and D.P. Rao, Biointerface Res. Appl. Chem., 12, 1352 (2022); https://doi.org/10.33263/BRIAC121.13521364
L. Dey, S. Rabi, D. Palit, S.K.S. Hazari, Z.A. Begum, I.M.M. Rahman and T.G. Roy, J. Mol. Struct., 1240, 130579 (2021); https://doi.org/10.1016/j.molstruc.2021.130579
S.J. Dorazio, A.O. Olatunde, P.B. Tsitovich and J.R. Morrow, J. Biol. Inorg. Chem., 19, 191 (2014); https://doi.org/10.1007/s00775-013-1059-4
R.D. Hancock and G.J. McDougall, Adv. Mol. Relax. Interact. Process., 18, 99 (1980); https://doi.org/10.1016/0378-4487(80)80030-6
A. Yepremyan, M.A. Mekhail, B.P. Niebuhr, K. Pota, N. Sadagopan, T.M. Schwartz and K.N. Green, J. Org. Chem., 85, 4988 (2020); https://doi.org/10.1021/acs.joc.0c00188
M. Kempa, P. Kozub, J. Kimball, M. Rojkiewicz, P. Kus, Z. Gryczynski and A. Ratuszna, Spectrochim. Acta A Mol. Biomol. Spectrosc., 146, 249 (2015); https://doi.org/10.1016/j.saa.2015.03.076
S.M. Brewer, K.R. Wilson, D.G. Jones, E.W. Reinheimer, S.J. Archibald, T.J. Prior, M.A. Ayala, A.L. Foster, T.J. Hubin and K.N. Green, Inorg. Chem., 57, 8890 (2018); https://doi.org/10.1021/acs.inorgchem.8b00777
K. Shalabi, O.A. El-Gammal and Y.M. Abdallah, Colloids Surf. A Physicochem. Eng. Asp., 609, 125653 (2021); https://doi.org/10.1016/j.colsurfa.2020.125653
M. Shakir, N. Bano, M.A. Rauf and M. Owais, Chem. Sci. J., 129, 1905 (2017); https://doi.org/10.1007/s12039-017-1398-8
H.A. El-Boraey and O.A. EL-Gammal, Open Chem. J., 5, 51 (2018); https://doi.org/10.2174/1874842201805010051
M.L. Grieve, P.R.W.J. Davey, C.M. Forsyth and B.M. Paterson, Molecules, 26, 3646 (2021); https://doi.org/10.3390/molecules26123646
S.G. Shankarwar, B.B. Nagolkar, V.A. Shelke and T.K. Chondhekar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 145, 188 (2015); https://doi.org/10.1016/j.saa.2015.02.006
P. Rajakkani, A. Alagarraj and S.A.G. Thangavelu, Inorg. Chem. Commun., 134, 108989 (2021); https://doi.org/10.1016/j.inoche.2021.108989
D. Kaleeswaran and R. Murugavel, Chem. Sci. J., 130, 1 (2018); https://doi.org/10.1007/s12039-017-1403-2
L. Koziol, C.A. Valdez, S.E. Baker, E.Y. Lau, W.C. Floyd III, S.E. Wong, J.H. Satcher Jr., F.C. Lightstone and R.D. Aines, Inorg. Chem., 51, 6803 (2012); https://doi.org/10.1021/ic300526b
W. Ye, D.M. Ho, S. Friedle, T.D. Palluccio and E.V. Rybak-Akimova, Inorg. Chem., 51, 5006 (2012); https://doi.org/10.1021/ic202435r
M.G. Savelieff, G. Nam, J. Kang, H.J. Lee, M. Lee and M.H. Lim, Chem. Rev., 119, 1221 (2019); https://doi.org/10.1021/acs.chemrev.8b00138
A. Gautam, J. Mol. Struct., 1260, 132740 (2022); https://doi.org/10.1016/j.molstruc.2022.132740
T.A. Lönnberg, M. Helkearo, A. Jancso and T. Gajda, Dalton Trans., 41, 3328 (2012); https://doi.org/10.1039/c2dt10193a
J. Li, R. Liu, J. Jiang, X. Liang, G. Huang, D. Yang, H. Chen, L. Pan and Z. Ma, J. Inorg. Biochem., 210, 111165 (2020); https://doi.org/10.1016/j.jinorgbio.2020.111165
S. Chandra and Ruchi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 103, 338 (2013); https://doi.org/10.1016/j.saa.2012.10.065
O.A. El-Gammal, A.F. Al-Hossainy and S.A. El-Brashy, J. Mol. Struct., 1165, 177 (2018); https://doi.org/10.1016/j.molstruc.2018.03.057
N. Fahmi, M. Upadhyay, N. Sharma and S. Belwal, J. Chem. Res., 44, 336 (2020); https://doi.org/10.1177/1747519819893885
C.I. Yeo, E.R.T. Tiekink and J. Chew, Inorganics, 9, 48 (2021); https://doi.org/10.3390/inorganics9060048
Z. You, X. Ran, Y. Dai and Y. Ran, J. Mycol. Med., 28, 492 (2018); https://doi.org/10.1016/j.mycmed.2018.03.007
T.O. Ajiboye, B.O. Oluwarinde, P.K. Montso, C.N. Ateba and D.C. Onwudiwe, Results Chem., 3, 100241 (2021); https://doi.org/10.1016/j.rechem.2021.100241
J.-S. Lee, I.-H. Song, P.B. Shinde and S.B. Nimse, Antioxidants, 9, 859 (2020); https://doi.org/10.3390/antiox9090859
C. Dileep, M. Abdoh, M. Chakravarthy, K. Mohana and M. Sridhar, Acta Crystallogr. Sect. E Struct. Rep. Online, 68, 02972 (2012); https://doi.org/10.1107/S1600536812039426
M.H. Abo-Ghalia, G.O. Moustafa, A.E.-G.E. Amr, A.M. Naglah, E.A. Elsayed and A.H. Bakheit, Molecules, 25, 1253 (2020); https://doi.org/10.3390/molecules25051253
I. Masih, N. Fahmi and Rajkumar, J. Enzyme Inhib. Med. Chem., 28, 33 (2013); https://doi.org/10.3109/14756366.2011.625022
O.H.S. Al-Obaidi and A.R. Al-Hiti, Am. Chem. Sci. J., 2, 202 (2012); https://doi.org/10.9734/ACSJ/2012/1063
S.K. Das Gupta, S. Rabi, D. Ghosh, F. Yasmin, B.K. Dey, S. Dey and T.G. Roy, Chem. Sci. J., 133, 7 (2021); https://doi.org/10.1007/s12039-020-01861-7
A. Singh and A. Chaudhary, Silicon, 11, 1107 (2019); https://doi.org/10.1007/s12633-018-9971-4
J.H. Pandya, M. Travadi, R.N. Jadeja, R.N. Patel and V.K. Gupta, J. Indian Chem. Soc., 99, 100403 (2022); https://doi.org/10.1016/j.jics.2022.100403
K. Sharma, D.P. Singh and V. Kumar, Indian J. Chem. Technol., 24, 534 (2017).
P. Rathi and D.P. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 136, 381 (2015); https://doi.org/10.1016/j.saa.2014.09.044
A. Rajak, A. Srivastava, S.C. Shrivastava, R.S. Chauhan, U.S. Patel and S. Srivastava, Orient. J. Chem., 37, 763 (2021); https://doi.org/10.13005/ojc/370401
D.P. Singh, K. Kumar, S.S. Dhiman and J. Sharma, J. Enzyme Inhib. Med. Chem., 24, 795 (2009); https://doi.org/10.1080/14756360802397179
S.A. Zarei, A.A. Khandar, M. Khatamian, S.A. Hosseini-Yazdi, I. Dechamps, E. Guillon and M. Piltan, Inorg. Chim. Acta, 394, 348 (2013); https://doi.org/10.1016/j.ica.2012.08.017
M. Tyagi, S. Chandra and P. Tyagi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 1 (2014); https://doi.org/10.1016/j.saa.2013.07.074
N. Fahmi, S. Sharma, R. Kumar and R.V. Singh, Chem. Sci. Rev. Lett., 3, 488 (2014).
O.P. Sharma and T.K. Bhat, Food Chem., 113, 1202 (2009); https://doi.org/10.1016/j.foodchem.2008.08.008