Copyright (c) 2023 Randhir Rai
This work is licensed under a Creative Commons Attribution 4.0 International License.
Gram Scale Synthesis of Cuprous Oxide Nanoparticles: Dip Coating on Cellulose Filter Paper, Antibacterial Activity and Comparison with Commonly Available Face Masks
Corresponding Author(s) : Randhir Rai
Asian Journal of Chemistry,
Vol. 35 No. 9 (2023): Vol 35 Issue 9, 2023
Abstract
Cuprous oxide nanoparticles (Cu2ONPs) were synthesized on a gram scale via bottom-up approach without making use of any hazardous stabilizing agent. The nanoparticles were coated on qualitative cellulose filter paper via dip coating method. UV-Vis spectroscopy, Powder X-Ray diffraction (PXRD) and electron microscopy were used to characterize Cu2ONPs and Cu2ONPs coated filter paper (Cu2ONPs-FP). The antibacterial activity of Cu2ONPs-FP was studied against E. coli DH5α and compared with commonly accessible face masks.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Ikeda, T. Takata, M. Komoda, M. Hara, J.N. Kondo, K. Domen, A. Tanaka, H. Hosono and H. Kawazoe, Phys. Chem. Chem. Phys., 1, 4485 (1999); https://doi.org/10.1039/a903543e
- M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril and R.S. Varma, Chem. Rev., 116, 3722 (2016); https://doi.org/10.1021/acs.chemrev.5b00482
- R.N. Briskman, Sol. Energy Mater. Sol. Cells, 27, 361 (1992); https://doi.org/10.1016/0927-0248(92)90097-9
- H. Zhang, Q. Zhu, Y. Zhang, Y. Wang, L. Zhao and B. Yu, Adv. Funct. Mater., 17, 2766 (2007); https://doi.org/10.1002/adfm.200601146
- E. Melamed, A. Rovitsky, T. Roth, L. Assa and G. Borkow, Medicina, 57, 1129 (2021); https://doi.org/10.3390/medicina57101129
- A.P. Ingle, N. Duran and M. Rai, Appl. Microbiol. Biotechnol., 98, 1001 (2014); https://doi.org/10.1007/s00253-013-5422-8
- I.-K. Shim, Y.I. Lee, K.J. Lee and J. Joung, Diffus. Defect Data Solid State Data Pt. B Solid State Phenom., 124-126, 1185 (2007); https://doi.org/10.4028/www.scientific.net/SSP.124-126.1185
- J.V. Park, J. Kim, H. Kwon and H. Song, Adv. Mater., 21, 803 (2009); https://doi.org/10.1002/adma.200800596
- J.K. Taubenberger and D.M. Morens, Emerg. Infect. Dis., 12, 15 (2006); rhttps://doi.org/10.3201/eid1209.05-0979
- https://www.who.int/teams/global-tuberculosis-programme/tb-reports (accessed 28th Feb. 2023).
- https://covid19.who.int/ (accessed 28th Feb 2023)
- J. Moon and B.-H. Ryu, Environ. Res., 202, 111679 (2021); https://doi.org/10.1016/j.envres.2021.111679
- B.J. Cowling, Y. Zhou, D.K.M. Ip, G.M. Leung and A.E. Aiello, Epidemiol. Infect., 138, 449 (2010); https://doi.org/10.1017/S0950268809991658
- J.T. Brooks and J.C. Butler, JAMA, 325, 998 (2021); https://doi.org/10.1001/jama.2021.1505
- https://ashleyneese.com/the-healing-and-metaphysical-benefits-of-copper-water/ (accessed 28th Feb 2023).
- https://www.thoughtco.com/copper-history-pt-i-2340112 (accessed 28th Feb 2023).
- V.B.P. Sudha, S. Ganesan, G.P. Pazhani, T. Ramamurthy, G.B. Nair and P. Venkatasubramanian, J. Health Popul. Nutr., 30, 17 (2012); https://doi.org/10.3329/jhpn.v30i1.11271
- P. Pandey, S. Merwyn, G.S. Agarwal, B.K. Tripathi and S.C. Pant, J. Nanopart. Res., 14, 709 (2012); https://doi.org/10.1007/s11051-011-0709-0
- G. Grass, C. Rensing and C. Solioz, Appl. Environ. Microbiol., 77, 1541 (2011); https://doi.org/10.1128/AEM.02766-10
- M.G. Schmidt, R.E. Tuuri, A. Dharsee, H.H. Attaway, S.E. Fairey, K.T. Borg, C.D. Salgado and B.E. Hirsch, Am. J. Infect. Control, 45, 642 (2017); https://doi.org/10.1016/j.ajic.2017.01.030
- N. van Doremalen, T. Bushmaker, D.H. Morris, M.G. Holbrook, A. Gamble, B.N. Williamson, A. Tamin, J.L. Harcourt, N.J. Thornburg, S.I. Gerber, J.O. Lloyd-Smith, E. de Wit and V.J. Munster, N. Engl. J. Med., 382, 1564 (2020); https://doi.org/10.1056/NEJMc2004973
- G. Borkow, H.H. Lara, C.Y. Covington, A. Nyamathi and J. Gabbay, Antimicrob. Agents Chemother., 52, 518 (2008); https://doi.org/10.1128/AAC.00899-07
- T.A. Dankovich and J.A. Smith, Water Res., 63, 245 (2014); https://doi.org/10.1016/j.watres.2014.06.022
- J. Yang, Z. Ao, H. Wu and S. Zhang, Chemosphere, 268, 128835 (2021); https://doi.org/10.1016/j.chemosphere.2020.128835
- I. Foffa, P. Losi, P. Quaranta, A. Cara, T. Al Kayal, M. D’Acunto, G. Presciuttini, M. Pistello and G. Soldani, J. Appl. Biomater. Funct. Mater., 20, 22808000221076326 (2022); https://doi.org/10.1177/22808000221076326
- M. Nejad, R. Shafaghi, L. Pershin, J. Mostaghimi and P. Cooper, BioResources, 12, 143 (2016); https://doi.org/10.15376/biores.12.1.143-156
- L. Jasmani, R. Rusli, T. Khadiran, R. Jalil and S. Adnan, Nanoscale Res. Lett., 15, 207 (2020); https://doi.org/10.1186/s11671-020-03438-2
- R. Rai and D.K. Chand, J. Chem. Sci., 132, 83 (2020); https://doi.org/10.1007/s12039-020-01774-5
- R. Rai and D.K. Chand, J. Chem. Sci., 133, 87 (2021); https://doi.org/10.1007/s12039-021-01940-3
- S.A. Akintelu, A.S. Folorunso, F.A. Folorunso and A.K. Oyebamiji, Heliyon, 6, e04508 (2020); https://doi.org/10.1016/j.heliyon.2020.e04508
References
S. Ikeda, T. Takata, M. Komoda, M. Hara, J.N. Kondo, K. Domen, A. Tanaka, H. Hosono and H. Kawazoe, Phys. Chem. Chem. Phys., 1, 4485 (1999); https://doi.org/10.1039/a903543e
M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril and R.S. Varma, Chem. Rev., 116, 3722 (2016); https://doi.org/10.1021/acs.chemrev.5b00482
R.N. Briskman, Sol. Energy Mater. Sol. Cells, 27, 361 (1992); https://doi.org/10.1016/0927-0248(92)90097-9
H. Zhang, Q. Zhu, Y. Zhang, Y. Wang, L. Zhao and B. Yu, Adv. Funct. Mater., 17, 2766 (2007); https://doi.org/10.1002/adfm.200601146
E. Melamed, A. Rovitsky, T. Roth, L. Assa and G. Borkow, Medicina, 57, 1129 (2021); https://doi.org/10.3390/medicina57101129
A.P. Ingle, N. Duran and M. Rai, Appl. Microbiol. Biotechnol., 98, 1001 (2014); https://doi.org/10.1007/s00253-013-5422-8
I.-K. Shim, Y.I. Lee, K.J. Lee and J. Joung, Diffus. Defect Data Solid State Data Pt. B Solid State Phenom., 124-126, 1185 (2007); https://doi.org/10.4028/www.scientific.net/SSP.124-126.1185
J.V. Park, J. Kim, H. Kwon and H. Song, Adv. Mater., 21, 803 (2009); https://doi.org/10.1002/adma.200800596
J.K. Taubenberger and D.M. Morens, Emerg. Infect. Dis., 12, 15 (2006); rhttps://doi.org/10.3201/eid1209.05-0979
https://www.who.int/teams/global-tuberculosis-programme/tb-reports (accessed 28th Feb. 2023).
https://covid19.who.int/ (accessed 28th Feb 2023)
J. Moon and B.-H. Ryu, Environ. Res., 202, 111679 (2021); https://doi.org/10.1016/j.envres.2021.111679
B.J. Cowling, Y. Zhou, D.K.M. Ip, G.M. Leung and A.E. Aiello, Epidemiol. Infect., 138, 449 (2010); https://doi.org/10.1017/S0950268809991658
J.T. Brooks and J.C. Butler, JAMA, 325, 998 (2021); https://doi.org/10.1001/jama.2021.1505
https://ashleyneese.com/the-healing-and-metaphysical-benefits-of-copper-water/ (accessed 28th Feb 2023).
https://www.thoughtco.com/copper-history-pt-i-2340112 (accessed 28th Feb 2023).
V.B.P. Sudha, S. Ganesan, G.P. Pazhani, T. Ramamurthy, G.B. Nair and P. Venkatasubramanian, J. Health Popul. Nutr., 30, 17 (2012); https://doi.org/10.3329/jhpn.v30i1.11271
P. Pandey, S. Merwyn, G.S. Agarwal, B.K. Tripathi and S.C. Pant, J. Nanopart. Res., 14, 709 (2012); https://doi.org/10.1007/s11051-011-0709-0
G. Grass, C. Rensing and C. Solioz, Appl. Environ. Microbiol., 77, 1541 (2011); https://doi.org/10.1128/AEM.02766-10
M.G. Schmidt, R.E. Tuuri, A. Dharsee, H.H. Attaway, S.E. Fairey, K.T. Borg, C.D. Salgado and B.E. Hirsch, Am. J. Infect. Control, 45, 642 (2017); https://doi.org/10.1016/j.ajic.2017.01.030
N. van Doremalen, T. Bushmaker, D.H. Morris, M.G. Holbrook, A. Gamble, B.N. Williamson, A. Tamin, J.L. Harcourt, N.J. Thornburg, S.I. Gerber, J.O. Lloyd-Smith, E. de Wit and V.J. Munster, N. Engl. J. Med., 382, 1564 (2020); https://doi.org/10.1056/NEJMc2004973
G. Borkow, H.H. Lara, C.Y. Covington, A. Nyamathi and J. Gabbay, Antimicrob. Agents Chemother., 52, 518 (2008); https://doi.org/10.1128/AAC.00899-07
T.A. Dankovich and J.A. Smith, Water Res., 63, 245 (2014); https://doi.org/10.1016/j.watres.2014.06.022
J. Yang, Z. Ao, H. Wu and S. Zhang, Chemosphere, 268, 128835 (2021); https://doi.org/10.1016/j.chemosphere.2020.128835
I. Foffa, P. Losi, P. Quaranta, A. Cara, T. Al Kayal, M. D’Acunto, G. Presciuttini, M. Pistello and G. Soldani, J. Appl. Biomater. Funct. Mater., 20, 22808000221076326 (2022); https://doi.org/10.1177/22808000221076326
M. Nejad, R. Shafaghi, L. Pershin, J. Mostaghimi and P. Cooper, BioResources, 12, 143 (2016); https://doi.org/10.15376/biores.12.1.143-156
L. Jasmani, R. Rusli, T. Khadiran, R. Jalil and S. Adnan, Nanoscale Res. Lett., 15, 207 (2020); https://doi.org/10.1186/s11671-020-03438-2
R. Rai and D.K. Chand, J. Chem. Sci., 132, 83 (2020); https://doi.org/10.1007/s12039-020-01774-5
R. Rai and D.K. Chand, J. Chem. Sci., 133, 87 (2021); https://doi.org/10.1007/s12039-021-01940-3
S.A. Akintelu, A.S. Folorunso, F.A. Folorunso and A.K. Oyebamiji, Heliyon, 6, e04508 (2020); https://doi.org/10.1016/j.heliyon.2020.e04508