This work is licensed under a Creative Commons Attribution 4.0 International License.
Exploring the Decreasing Coercivity Properties of Aluminum Cobalt Ferrites Prepared by Coprecipitation Method
Corresponding Author(s) : R. Sagayaraj
Asian Journal of Chemistry,
Vol. 35 No. 8 (2023): Vol 35 Issue 8, 2023
Abstract
Cobalt aluminum ferrites were synthesized by coprecipitation method at 1000 ºC. XRD studies pointed out the employed samples (Fe2+Al23+O42−, Fe0.25Co0.75Al2O4 and Fe0.75Co0.25Al2O4) were crystallized in a single phase cubic spinel form. The synthesized samples were calculated structural parameters such as crystallitesize (D: 17 nm), X-ray density (Dx: 3.97 to 4.15 g/cm3), volume of the unit cell (V: 583.64 to 586.58 Å), lattice strain (ε: 6.9 × 10-3), dislocation density (δ: 3.3 × 10-3) and lattice constant (a: 8.357 to 8.371 Å). The FE-SEM microstructure confirmed that various concentrations result in different particle sizes (5 μm to 500 nm). The magnetic characteristics were investigated by VSM and magnetic parameters like saturation magnetization (Ms: 4.82 × 10-3 to 0.673 emu/g), retentivity (Mr: 1.545 × 10-3 to 0.229 emu/g), coercivity (Hc: 775.45 to 2212.8 Oe), magnetic moment (μB: 1.57 × 10-4 to 2.108 × 10-2), remnant ratio (R: 0.32 to 0.357 no unit) and anisotropy constant (K: 3.418 to 177.57 J/m3) were calculated. High coercivity materials are ideal for use in magnetic recording media, permanent magnets and microwave devices since they possess a high degree of resistance to an external magnetic force.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Sagayaraj, S. Aravazhi, P. Praveen and G. Chandrasekaran, J. Mater. Sci. Mater. Electron., 29, 2151 (2018); https://doi.org/10.1007/s10854-017-8127-4
- T.M. Ali, S.M. Ismail, S.F. Mansour, M.A. Abdo and M. Yehia, J. Mater. Sci. Mater. Electron., 32, 3092 (2021); https://doi.org/10.1007/s10854-020-05059-y
- K.M. Tyner, N. Zheng, S. Choi, X. Xu, P. Zou, W. Jiang, C. Guo and C.N. Cruz, AAPS J., 19, 1071 (2017); https://doi.org/10.1208/s12248-017-0084-6
- T. Gebel, R. Marchan and J.G. Hengstler, Arch. Toxicol., 87, 2057 (2013); https://doi.org/10.1007/s00204-013-1158-6
- R. Sagayaraj, S. Aravazhi, C. Selva kumar, S. Senthil kumar and G. Chandrasekaran, SN Appl. Sci., 1, 271 (2019); https://doi.org/10.1007/s42452-019-0244-7
- R. Sagayaraj, M. Jegadheeswari, S. Aravazhi, G. Chandrasekaran and A. Dhanalakshmi, Chemistry Africa, 3, 955 (2020); https://doi.org/10.1007/s42250-020-00153-4
- R. Sagayaraj, T. Dhineshkumar, A. Prakash, S. Aravazhi, D. Jayarajan, G. Chandrasekaran and S. Sebastian, Chem. Phys. Lett., 759, 137944 (2020); https://doi.org/10.1016/j.cplett.2020.137944
- R. Sagayaraj, S. Aravazhi and G. Chandrasekaran, Int. Nano Lett., 11, 307 (2021); https://doi.org/10.1007/s40089-021-00343-z
- R. Sagayaraj, Int. Nano Lett., 12, 345 (2022); https://doi.org/10.1007/s40089-022-00368-y
- L. Phor, S. Chahal and V. Kumar, J. Adv. Ceram., 9, 576 (2020); https://doi.org/10.1007/s40145-020-0396-3
- R.J. Hill, J.R. Craig and G.V. Gibbs, Phys. Chem. Miner., 4, 317 (1979); https://doi.org/10.1007/BF00307535
- G.A. Sawatzky, F. Van Der Woude and A.H. Morrish, Phys. Rev., 187, 747 (1969); https://doi.org/10.1103/PhysRev.187.747
- T. Sato, K. Haneda, M. Seki and T. Iijima, Appl. Phys., A Solids Surf., 50, 13 (1990); https://doi.org/10.1007/BF00323947
- S. Wells and C.V. Ramana, Ceram. Int., 39, 9549 (2013); https://doi.org/10.1016/j.ceramint.2013.05.073
- S.S. More, R.H. Kadam, A.B. Kadam, A.R. Shite, D.R. Mane and K.M. Jadhav, J. Alloys Compd., 502, 477 (2010); https://doi.org/10.1016/j.jallcom.2010.04.201
- P.S. Aghav, V.N. Dhage, M.L. Mane, D.R. Shengule, R.G. Dorik and K.M. Jadhav, Physica B, 406, 4350 (2011); https://doi.org/10.1016/j.physb.2011.08.066
- A.I. Borhan, A.R. Iordan and M.N. Palamaru, Mater. Res. Bull., 48, 2549 (2013); https://doi.org/10.1016/j.materresbull.2013.03.012
- M. Yehia, S.M. Ismail and M.B. Mohamed, J. Supercond. Nov. Magn., 28, 3335 (2015); https://doi.org/10.1007/s10948-015-3162-y
- Y. Dong, H. Lu, J. Cui, D. Yan, F.X. Yin and D.Y. Li, Ceram. Int., 43, 16094 (2017); https://doi.org/10.1016/j.ceramint.2017.08.142
- O. Karaagac, B.B. Yildiz and H. Kockar, J. Magn. Magn. Mater., 473, 262 (2019); https://doi.org/10.1016/j.jmmm.2018.10.063
- O. Karaagac and H. Kockar, IEEE Trans. Magn., 48, 1532 (2012); https://doi.org/10.1109/TMAG.2011.2173313
- T.K. Sau and A.L. Rogach, Complex-Shaped Metal Nanoparticles Wiley-VCH Verlag & Co., KGaA, Weinheim (2012).
- Z. Alborzi, A. Hassanzadeh and M.M. Golzan, Int. J. Nanosci. Nanotechnol., 8, 93 (2012).
- R. Sagayaraj, S. Aravazhi and G. Chandrasekaran, J. Inorg. Organomet. Polym. Mater., 29, 2252 (2019); https://doi.org/10.1007/s10904-019-01183-3
- R. Sagayaraj, S. Aravazhi and G. Chandrasekaran, Appl. Phys., A Mater. Sci. Process., 127, 502 (2021); https://doi.org/10.1007/s00339-021-04653-z
- A. Prakash, R. Sagayaraj, D. Jayarajan, S. Aravazhi, G. Chandrasekaran and R. Nithya, Asian J. Chem., 34, 2288 (2022); https://doi.org/10.14233/ajchem.2022.23840
- D.S. Mathew and R.S. Juang, Chem. Eng. J., 129, 51 (2007); https://doi.org/10.1016/j.cej.2006.11.001
- N. Abbas, N. Rubab, N. Sadiq, S. Manzoor, M.I. Khan, J. Fernandez Garcia, I. Barbosa Aragao, M. Tariq, Z. Akhtar and G. Yasmin, Water, 12, 2285 (2020); https://doi.org/10.3390/w12082285
- R.S. Yadav, I. Kuritka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, J. Švec, V. Enev and M. Hajdúchová, Adv. Nat. Sci.: Nanosci. Nanotechnol., 8, 045002 (2017); https://doi.org/10.1088/2043-6254/aa853a
- W. Gu, Q. Xie, M. Xing and D. Wu, Chem. Eng. Res. Des., 117, 706 (2017); https://doi.org/10.1016/j.cherd.2016.11.026
- C. Murugesan and G. Chandrasekaran, RSC Adv., 5, 73714 (2015); https://doi.org/10.1039/C5RA14351A
- A. Ashok, L.J. Kennedy and J.J. Vijaya, J. Alloys Compd., 780, 816 (2019); https://doi.org/10.1016/j.jallcom.2018.11.390
- S.A. Al-Zahrani, A. Manikandan, K. Thanrasu, A. Dinesh, K.K. Raja, M.A. Almessiere, Y. Slimani, A. Baykal, S. Bhuminathan, S.R. Jayesh, J. Ahmed, H.S. Alorfi, M.A. Hussein, I. Khan and A. Khan, Crystals, 12, 268 (2022); https://doi.org/10.3390/cryst12020268
- M.Y. Lodhi, K. Mahmood, A. Mahmood, H. Malik, M.F. Warsi, I. Shakir, M. Asghar and M.A. Khan, Curr. Appl. Phys., 14, 716 (2014);
- https://doi.org/10.1016/j.cap.2014.02.021
- J. Fukushima, Y. Hayashi and H. Takizawa, J. Asian Ceramic Soc., 1, 41 (2013); https://doi.org/10.1016/j.jascer.2013.02.001
- D.P. Dutta and G. Sharma, Mater. Sci. Eng. B, 176, 177 (2011); https://doi.org/10.1016/j.mseb.2010.10.018
- X. Duan, M. Pan, F. Yu and D. Yuan, J. Alloys Compd., 509, 1079 (2011); https://doi.org/10.1016/j.jallcom.2010.09.199
- A. Walsh, S.-H. Wei, Y. Yan, M.M. Al-Jassim, J.A. Turner, M. Woodhouse and B.A. Parkinson, Phys. Rev. B Condens. Matter Mater. Phys., 76, 165119 (2007); https://doi.org/10.1103/PhysRevB.76.165119
- T.P. Yadav, N.K. Mukhopadhyay, R.S. Tiwari and O.N. Srivastava, J. Nanosci. Nanotechnol., 7, 575 (2007); https://doi.org/10.1166/jnn.2007.128
References
R. Sagayaraj, S. Aravazhi, P. Praveen and G. Chandrasekaran, J. Mater. Sci. Mater. Electron., 29, 2151 (2018); https://doi.org/10.1007/s10854-017-8127-4
T.M. Ali, S.M. Ismail, S.F. Mansour, M.A. Abdo and M. Yehia, J. Mater. Sci. Mater. Electron., 32, 3092 (2021); https://doi.org/10.1007/s10854-020-05059-y
K.M. Tyner, N. Zheng, S. Choi, X. Xu, P. Zou, W. Jiang, C. Guo and C.N. Cruz, AAPS J., 19, 1071 (2017); https://doi.org/10.1208/s12248-017-0084-6
T. Gebel, R. Marchan and J.G. Hengstler, Arch. Toxicol., 87, 2057 (2013); https://doi.org/10.1007/s00204-013-1158-6
R. Sagayaraj, S. Aravazhi, C. Selva kumar, S. Senthil kumar and G. Chandrasekaran, SN Appl. Sci., 1, 271 (2019); https://doi.org/10.1007/s42452-019-0244-7
R. Sagayaraj, M. Jegadheeswari, S. Aravazhi, G. Chandrasekaran and A. Dhanalakshmi, Chemistry Africa, 3, 955 (2020); https://doi.org/10.1007/s42250-020-00153-4
R. Sagayaraj, T. Dhineshkumar, A. Prakash, S. Aravazhi, D. Jayarajan, G. Chandrasekaran and S. Sebastian, Chem. Phys. Lett., 759, 137944 (2020); https://doi.org/10.1016/j.cplett.2020.137944
R. Sagayaraj, S. Aravazhi and G. Chandrasekaran, Int. Nano Lett., 11, 307 (2021); https://doi.org/10.1007/s40089-021-00343-z
R. Sagayaraj, Int. Nano Lett., 12, 345 (2022); https://doi.org/10.1007/s40089-022-00368-y
L. Phor, S. Chahal and V. Kumar, J. Adv. Ceram., 9, 576 (2020); https://doi.org/10.1007/s40145-020-0396-3
R.J. Hill, J.R. Craig and G.V. Gibbs, Phys. Chem. Miner., 4, 317 (1979); https://doi.org/10.1007/BF00307535
G.A. Sawatzky, F. Van Der Woude and A.H. Morrish, Phys. Rev., 187, 747 (1969); https://doi.org/10.1103/PhysRev.187.747
T. Sato, K. Haneda, M. Seki and T. Iijima, Appl. Phys., A Solids Surf., 50, 13 (1990); https://doi.org/10.1007/BF00323947
S. Wells and C.V. Ramana, Ceram. Int., 39, 9549 (2013); https://doi.org/10.1016/j.ceramint.2013.05.073
S.S. More, R.H. Kadam, A.B. Kadam, A.R. Shite, D.R. Mane and K.M. Jadhav, J. Alloys Compd., 502, 477 (2010); https://doi.org/10.1016/j.jallcom.2010.04.201
P.S. Aghav, V.N. Dhage, M.L. Mane, D.R. Shengule, R.G. Dorik and K.M. Jadhav, Physica B, 406, 4350 (2011); https://doi.org/10.1016/j.physb.2011.08.066
A.I. Borhan, A.R. Iordan and M.N. Palamaru, Mater. Res. Bull., 48, 2549 (2013); https://doi.org/10.1016/j.materresbull.2013.03.012
M. Yehia, S.M. Ismail and M.B. Mohamed, J. Supercond. Nov. Magn., 28, 3335 (2015); https://doi.org/10.1007/s10948-015-3162-y
Y. Dong, H. Lu, J. Cui, D. Yan, F.X. Yin and D.Y. Li, Ceram. Int., 43, 16094 (2017); https://doi.org/10.1016/j.ceramint.2017.08.142
O. Karaagac, B.B. Yildiz and H. Kockar, J. Magn. Magn. Mater., 473, 262 (2019); https://doi.org/10.1016/j.jmmm.2018.10.063
O. Karaagac and H. Kockar, IEEE Trans. Magn., 48, 1532 (2012); https://doi.org/10.1109/TMAG.2011.2173313
T.K. Sau and A.L. Rogach, Complex-Shaped Metal Nanoparticles Wiley-VCH Verlag & Co., KGaA, Weinheim (2012).
Z. Alborzi, A. Hassanzadeh and M.M. Golzan, Int. J. Nanosci. Nanotechnol., 8, 93 (2012).
R. Sagayaraj, S. Aravazhi and G. Chandrasekaran, J. Inorg. Organomet. Polym. Mater., 29, 2252 (2019); https://doi.org/10.1007/s10904-019-01183-3
R. Sagayaraj, S. Aravazhi and G. Chandrasekaran, Appl. Phys., A Mater. Sci. Process., 127, 502 (2021); https://doi.org/10.1007/s00339-021-04653-z
A. Prakash, R. Sagayaraj, D. Jayarajan, S. Aravazhi, G. Chandrasekaran and R. Nithya, Asian J. Chem., 34, 2288 (2022); https://doi.org/10.14233/ajchem.2022.23840
D.S. Mathew and R.S. Juang, Chem. Eng. J., 129, 51 (2007); https://doi.org/10.1016/j.cej.2006.11.001
N. Abbas, N. Rubab, N. Sadiq, S. Manzoor, M.I. Khan, J. Fernandez Garcia, I. Barbosa Aragao, M. Tariq, Z. Akhtar and G. Yasmin, Water, 12, 2285 (2020); https://doi.org/10.3390/w12082285
R.S. Yadav, I. Kuritka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, J. Švec, V. Enev and M. Hajdúchová, Adv. Nat. Sci.: Nanosci. Nanotechnol., 8, 045002 (2017); https://doi.org/10.1088/2043-6254/aa853a
W. Gu, Q. Xie, M. Xing and D. Wu, Chem. Eng. Res. Des., 117, 706 (2017); https://doi.org/10.1016/j.cherd.2016.11.026
C. Murugesan and G. Chandrasekaran, RSC Adv., 5, 73714 (2015); https://doi.org/10.1039/C5RA14351A
A. Ashok, L.J. Kennedy and J.J. Vijaya, J. Alloys Compd., 780, 816 (2019); https://doi.org/10.1016/j.jallcom.2018.11.390
S.A. Al-Zahrani, A. Manikandan, K. Thanrasu, A. Dinesh, K.K. Raja, M.A. Almessiere, Y. Slimani, A. Baykal, S. Bhuminathan, S.R. Jayesh, J. Ahmed, H.S. Alorfi, M.A. Hussein, I. Khan and A. Khan, Crystals, 12, 268 (2022); https://doi.org/10.3390/cryst12020268
M.Y. Lodhi, K. Mahmood, A. Mahmood, H. Malik, M.F. Warsi, I. Shakir, M. Asghar and M.A. Khan, Curr. Appl. Phys., 14, 716 (2014);
https://doi.org/10.1016/j.cap.2014.02.021
J. Fukushima, Y. Hayashi and H. Takizawa, J. Asian Ceramic Soc., 1, 41 (2013); https://doi.org/10.1016/j.jascer.2013.02.001
D.P. Dutta and G. Sharma, Mater. Sci. Eng. B, 176, 177 (2011); https://doi.org/10.1016/j.mseb.2010.10.018
X. Duan, M. Pan, F. Yu and D. Yuan, J. Alloys Compd., 509, 1079 (2011); https://doi.org/10.1016/j.jallcom.2010.09.199
A. Walsh, S.-H. Wei, Y. Yan, M.M. Al-Jassim, J.A. Turner, M. Woodhouse and B.A. Parkinson, Phys. Rev. B Condens. Matter Mater. Phys., 76, 165119 (2007); https://doi.org/10.1103/PhysRevB.76.165119
T.P. Yadav, N.K. Mukhopadhyay, R.S. Tiwari and O.N. Srivastava, J. Nanosci. Nanotechnol., 7, 575 (2007); https://doi.org/10.1166/jnn.2007.128