This work is licensed under a Creative Commons Attribution 4.0 International License.
DFT, NBO, Fukui Functions and Monte Carlo Studies on Quinoline Derivatives for Corrosion Inhibition Property
Corresponding Author(s) : A. Charles
Asian Journal of Chemistry,
Vol. 35 No. 8 (2023): Vol 35 Issue 8, 2023
Abstract
The corrosion inhibiting property of 4-methylquinoline (4MQ) and 4-aminoquinaldine (4A2MQ) by using various quantum mechanical and molecular mechanics parameters such as EHOMO, ELUMO, energy difference (ΔEgap), electrophilicity, nucleophilicity, chemical hardness, chemical softness, adsorption energy on the metal surface, ability of back donation, electron affinity, chemical potential and dipole moment values are studied. Density functional studies were carried out using B3LYP/6-31g++(d,p), B3LYP/6-31g(d,p) and B3LYP/6-31g(d) basis sets. The outputs of the compounds were compared as well as the characteristics of the Fukui functions used to analyze them. The adsorption energy values were obtained using Monte Carlo simulation techniques. The adsorption energy calculations were carried out by using COMPASS force field and adsorption annealing methods. These calculated values had good agreement with previously reported values of these corrosion inhibitors. Comparing the combined dual descriptor values of 4MQ and 4A2MQ reveal that the latter compound readily undergoes electrophilic attack, leading to the enhanced corrosion inhibition. The efficiency of these corrosion inhibitors compounds by various studies was compared and the result shows that 4A2MQ can be better corrosion inhibitor than 4MQ.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.K. Verma, R. Aslam, J. Aslam, M.A. Quraishi, E.E. Ebenso and C. Verma, J. Mol. Struct., 1236, 130294 (2021); https://doi.org/10.1016/j.molstruc.2021.130294
- F.E. Abeng, B.E. Nyong, M.E. Ikpi and M.E. Obeten, Portug. Electrochim. Acta, 40, 243 (2022); https://doi.org/10.4152/pea.2022400402
- L. Chen, D. Lu and Y. Zhang, Materials, 15, 2023 (2022); https://doi.org/10.3390/ma15062023
- M. Düdükcü and G. Avci, Res. Chem. Intermed., 41, 4861 (2015); https://doi.org/10.1007/s11164-014-1572-2
- W. Huang, L. Hu, C. Liu, J. Pan, Y. Tian and K. Cao, Int. J. Electrochem. Sci., 13, 11273 (2018); https://doi.org/10.20964/2018.11.90
- C. Verma, H. Lgaz, D.K. Verma, E.E. Ebenso, I. Bahadur and M.A. Quraishi, J. Mol. Liq., 260, 99 (2018); https://doi.org/10.1016/j.molliq.2018.03.045
- J. Bartley, N. Huynh, S.E. Bottle, H. Flitt, D.P. Schweinsberg and T. Notoya, Corros. Sci., 45, 81 (2003); https://doi.org/10.1016/S0010-938X(02)00051-3
- L. Guo, S.T. Zhang, T.M. Lv and W.J. Feng, Res. Chem. Intermed., 41, 3729 (2015); https://doi.org/10.1007/s11164-013-1485-5
- L. Guo, C. Qi, X. Zheng, R. Zhang, X. Shen and S. Kaya, RSC Adv., 7, 29042 (2017); https://doi.org/10.1039/C7RA04120A
- C. Verma, L.O. Olasunkanmi, E.E. Ebenso, M.A. Quraishi and I.B. Obot, J. Phys. Chem. C, 120, 11598 (2016); https://doi.org/10.1021/acs.jpcc.6b04429
- H. Shokry, J. Mol. Struct., 1060, 80 (2014); https://doi.org/10.1016/j.molstruc.2013.12.030
- S.K. Saha, A. Dutta, P. Ghosh, D. Sukul and P. Banerjee, Phys. Chem. Chem. Phys., 18, 17898 (2016); https://doi.org/10.1039/C6CP01993E
- H. Shokry and E.M. Mabrouk, Arab. J. Chem., 10, S3402 (2017); https://doi.org/10.1016/j.arabjc.2014.01.023
- K. Zhou, R. Enos, D. Zhang and J. Tang, Compos. Struct., 280, 114816 (2022); https://doi.org/10.1016/j.compstruct.2021.114816
- A.D. Becke, J. Chem. Phys., 98, 1372 (1993); https://doi.org/10.1063/1.464304
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- T. Clark, J. Chandrasekhar, G.W. Spitznagel and P.V.R. Schleyer, J. Comput. Chem., 4, 294 (1983); https://doi.org/10.1002/jcc.540040303
- P.C. Hariharan and J.A. Pople, Theor. Chim. Acta, 28, 213 (1973); https://doi.org/10.1007/BF00533485
- W.J. Hehre, R. Ditchfield and J.A. Pople, J. Chem. Phys., 56, 2257 (1972); https://doi.org/10.1063/1.1677527
- D. Roy, T.A. Keith and J.M. Millam, Gauss View Version 6, Semichem Inc. Shawnee Mission KS (2019).
- L. Tian and F. Chen, J. Comput. Chem., 33, 466 (2012); https://doi.org/10.1002/jcc.21992
- D.S. Biovia, Materials Studio, R2 Dassault Systèmes BIOVIA, San Diego (2017).
- I. Lukovits, E. Kalman and F. Zucchi, Corrosion, 57, 3 (2001); https://doi.org/10.5006/1.3290328
- L. Jiang, Y. Qiang, Z. Lei, J. Wang, Z. Qin and B. Xiang, J. Mol. Liq., 255, 53 (2018); https://doi.org/10.1016/j.molliq.2018.01.133
- C.T. Ser, P. Zuvela and M.W. Wong, Appl. Surf. Sci., 512, 145612 (2020); https://doi.org/10.1016/j.apsusc.2020.145612
- S.K. Saha, P. Ghosh, A. Hens, N.C. Murmu and P. Banerjee, Physica E, 66, 332 (2015); https://doi.org/10.1016/j.physe.2014.10.035
- P.-O. Lowdin, Advances in Quantum Chemistry, Academic Press (1979).
- F.J. Luque, M. Orozco, P.K. Bhadane and S.R. Gadre, J. Phys. Chem., 97, 9380 (1993); https://doi.org/10.1021/j100139a021
- P.C. Mishra and A. Kumar, Theoretical and Computational Chemistry, Book Series, Elsevier, vol. 3, p. 257 (1996); https://doi.org/10.1016/S1380-7323(96)80046-X
- I. Alkorta and J.J. Perez, Int. J. Quantum Chem., 57, 123 (1996); https://doi.org/10.1002/(SICI)1097-461X(1996)57:1<123::AID-QUA14>3.0.CO;2-9
References
D.K. Verma, R. Aslam, J. Aslam, M.A. Quraishi, E.E. Ebenso and C. Verma, J. Mol. Struct., 1236, 130294 (2021); https://doi.org/10.1016/j.molstruc.2021.130294
F.E. Abeng, B.E. Nyong, M.E. Ikpi and M.E. Obeten, Portug. Electrochim. Acta, 40, 243 (2022); https://doi.org/10.4152/pea.2022400402
L. Chen, D. Lu and Y. Zhang, Materials, 15, 2023 (2022); https://doi.org/10.3390/ma15062023
M. Düdükcü and G. Avci, Res. Chem. Intermed., 41, 4861 (2015); https://doi.org/10.1007/s11164-014-1572-2
W. Huang, L. Hu, C. Liu, J. Pan, Y. Tian and K. Cao, Int. J. Electrochem. Sci., 13, 11273 (2018); https://doi.org/10.20964/2018.11.90
C. Verma, H. Lgaz, D.K. Verma, E.E. Ebenso, I. Bahadur and M.A. Quraishi, J. Mol. Liq., 260, 99 (2018); https://doi.org/10.1016/j.molliq.2018.03.045
J. Bartley, N. Huynh, S.E. Bottle, H. Flitt, D.P. Schweinsberg and T. Notoya, Corros. Sci., 45, 81 (2003); https://doi.org/10.1016/S0010-938X(02)00051-3
L. Guo, S.T. Zhang, T.M. Lv and W.J. Feng, Res. Chem. Intermed., 41, 3729 (2015); https://doi.org/10.1007/s11164-013-1485-5
L. Guo, C. Qi, X. Zheng, R. Zhang, X. Shen and S. Kaya, RSC Adv., 7, 29042 (2017); https://doi.org/10.1039/C7RA04120A
C. Verma, L.O. Olasunkanmi, E.E. Ebenso, M.A. Quraishi and I.B. Obot, J. Phys. Chem. C, 120, 11598 (2016); https://doi.org/10.1021/acs.jpcc.6b04429
H. Shokry, J. Mol. Struct., 1060, 80 (2014); https://doi.org/10.1016/j.molstruc.2013.12.030
S.K. Saha, A. Dutta, P. Ghosh, D. Sukul and P. Banerjee, Phys. Chem. Chem. Phys., 18, 17898 (2016); https://doi.org/10.1039/C6CP01993E
H. Shokry and E.M. Mabrouk, Arab. J. Chem., 10, S3402 (2017); https://doi.org/10.1016/j.arabjc.2014.01.023
K. Zhou, R. Enos, D. Zhang and J. Tang, Compos. Struct., 280, 114816 (2022); https://doi.org/10.1016/j.compstruct.2021.114816
A.D. Becke, J. Chem. Phys., 98, 1372 (1993); https://doi.org/10.1063/1.464304
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
T. Clark, J. Chandrasekhar, G.W. Spitznagel and P.V.R. Schleyer, J. Comput. Chem., 4, 294 (1983); https://doi.org/10.1002/jcc.540040303
P.C. Hariharan and J.A. Pople, Theor. Chim. Acta, 28, 213 (1973); https://doi.org/10.1007/BF00533485
W.J. Hehre, R. Ditchfield and J.A. Pople, J. Chem. Phys., 56, 2257 (1972); https://doi.org/10.1063/1.1677527
D. Roy, T.A. Keith and J.M. Millam, Gauss View Version 6, Semichem Inc. Shawnee Mission KS (2019).
L. Tian and F. Chen, J. Comput. Chem., 33, 466 (2012); https://doi.org/10.1002/jcc.21992
D.S. Biovia, Materials Studio, R2 Dassault Systèmes BIOVIA, San Diego (2017).
I. Lukovits, E. Kalman and F. Zucchi, Corrosion, 57, 3 (2001); https://doi.org/10.5006/1.3290328
L. Jiang, Y. Qiang, Z. Lei, J. Wang, Z. Qin and B. Xiang, J. Mol. Liq., 255, 53 (2018); https://doi.org/10.1016/j.molliq.2018.01.133
C.T. Ser, P. Zuvela and M.W. Wong, Appl. Surf. Sci., 512, 145612 (2020); https://doi.org/10.1016/j.apsusc.2020.145612
S.K. Saha, P. Ghosh, A. Hens, N.C. Murmu and P. Banerjee, Physica E, 66, 332 (2015); https://doi.org/10.1016/j.physe.2014.10.035
P.-O. Lowdin, Advances in Quantum Chemistry, Academic Press (1979).
F.J. Luque, M. Orozco, P.K. Bhadane and S.R. Gadre, J. Phys. Chem., 97, 9380 (1993); https://doi.org/10.1021/j100139a021
P.C. Mishra and A. Kumar, Theoretical and Computational Chemistry, Book Series, Elsevier, vol. 3, p. 257 (1996); https://doi.org/10.1016/S1380-7323(96)80046-X
I. Alkorta and J.J. Perez, Int. J. Quantum Chem., 57, 123 (1996); https://doi.org/10.1002/(SICI)1097-461X(1996)57:1<123::AID-QUA14>3.0.CO;2-9