This work is licensed under a Creative Commons Attribution 4.0 International License.
Efficient Transfer Hydrogenation of 4-Nitrophenol using Ammonia Borane over Metal-Organic Framework Derived Bimetallic Nanoparticles
Corresponding Author(s) : Akkenapally Swamy
Asian Journal of Chemistry,
Vol. 35 No. 8 (2023): Vol 35 Issue 8, 2023
Abstract
Metal-organic frameworks (MOFs) are crystalline porous materials composed of metal ions and organic linkers connected through covalent bonds. To synthesize bimetallic nanoparticles ammonia borane was used as a reducing agent was used on metal ions contained in MOF-74(Cu, Ni). Monometallic Cu and Ni nanoparticles were also synthesized from their corresponding MOF-74 materials. The nanoparticles generated through this methodology were effectively stabilized by the linker of MOF. These nanoparticles were then employed for the transfer hydrogenation of 4-nitrophenol to 4-aminophenol. Among the 5 different catalysts tested, CuxNi1-x exhibited exceptional catalytic activity towards 4-nitrophenol reduction within 2 min, indicating a synergistic effect between copper and nickel in the bimetallic catalyst. Additionally, these catalysts demonstrated good stability and recyclability up to 5 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.I. Din, R. Khalid, Z. Hussain, T. Hussain, A. Mujahid, J. Najeeb and F. Izhar, Crit. Rev. Anal. Chem., 50, 322 (2020); https://doi.org/10.1080/10408347.2019.1637241
- K.S. Ju and R.E. Parales, Microbiol. Mol. Biol. Rev., 74, 250 (2010); https://doi.org/10.1128/MMBR.00006-10
- X. Zhang, L. Chen, Y. Liu and Q. Duan, Catalysts, 11, 1336 (2021); https://doi.org/10.3390/catal11111336
- Y. Ji, Y. Shi, Y. Yang, P. Yang, L. Wang, J. Lu, J. Li, L. Zhou, C. Ferronato and J.M. Chovelon, J. Hazard. Mater., 361, 152 (2019); https://doi.org/10.1016/j.jhazmat.2018.08.083
- Y. Shaoqing, H. Jun and W. Jianlong, Radiat. Phys. Chem., 79, 1039 (2010); https://doi.org/10.1016/j.radphyschem.2010.05.008
- J.-Y. Lin, J. Lee, W.D. Oh, E. Kwon, Y.-C. Tsai, S. Phattarapattamawong, G. Lisak, C. Hu and K.-Y.A. Lin, J. Colloid Interface Sci., 602, 95 (2021); https://doi.org/10.1016/j.jcis.2021.05.098
- K.B. Narayanan and N. Sakthivel, J. Hazard. Mater., 189, 519 (2011); https://doi.org/10.1016/j.jhazmat.2011.02.069
- D. Toledano Garcia, L.Y. Ozer, F. Parrino, M. Ahmed, G.P. Brudecki, S.W. Hasan and G. Palmisano, Chemosphere, 209, 534 (2018); https://doi.org/10.1016/j.chemosphere.2018.05.197
- S.R. Subashchandrabose, K. Venkateswarlu, K. Krishnan, R. Naidu, R. Lockington and M. Megharaj, J. Hazard. Mater., 347, 176 (2018); https://doi.org/10.1016/j.jhazmat.2017.12.063
- M. Guzman, M. Estrada, S. Miridonov and A. Simakov, Micropor. Mesopor. Mater., 278, 241 (2019); https://doi.org/10.1016/j.micromeso.2018.11.020
- L.L. Bo, Y.B. Zhang, X. Quan and B. Zhao, J. Hazard. Mater., 153, 1201 (2008); https://doi.org/10.1016/j.jhazmat.2007.09.082
- N. Modirshahla, M.A. Behnajady and S. Mohammadi-Aghdam, J. Hazard. Mater., 154, 778 (2008); https://doi.org/10.1016/j.jhazmat.2007.10.120
- H. Zhang, C. Fei, D. Zhang and F. Tang, J. Hazard. Mater., 145, 227 (2007); https://doi.org/10.1016/j.jhazmat.2006.11.016
- P. Cañizares, C. Sáez, J. Lobato and M.A. Rodrigo, Ind. Eng. Chem. Res., 43, 1944 (2004); https://doi.org/10.1021/ie034025t
- T. Wi-Afedzi, F.Y. Yeoh, M.T. Yang, A.C.K. Yip and K.Y.A. Lin, Sep. Purif. Technol., 218, 138 (2019); https://doi.org/10.1016/j.seppur.2019.02.047
- A.M. Tafesh and J. Weiguny, Chem. Rev., 96, 2035 (1996); https://doi.org/10.1021/cr950083f
- R. Mallampati and S. Valiyaveettil, ACS Sustain. Chem. Eng., 2, 855 (2014); https://doi.org/10.1021/sc4004899
- T. Komatsu and T. Hirose, Appl. Catal. A Gen., 276, 95 (2004); https://doi.org/10.1016/j.apcata.2004.07.044
- C.V. Rode, M.J. Vaidya, R. Jaganathan and R.V. Chaudhari, Chem. Eng. Sci., 56, 1299 (2001); https://doi.org/10.1016/S0009-2509(00)00352-3
- M.L. Kantam, R. Chakravarti, U. Pal, B. Sreedhar and S. Bhargava, Adv. Synth. Catal., 350, 822 (2008); https://doi.org/10.1002/adsc.200800018
- H. Lu, H. Yin, Y. Liu, T. Jiang and L. Yu, Catal. Commun., 10, 313 (2008); https://doi.org/10.1016/j.catcom.2008.09.015
- H. Liu, J. Deng and W. Li, Catal. Lett., 137, 261 (2010); https://doi.org/10.1007/s10562-010-0362-8
- D. Patra, S.R. Nalluri, H.R. Tan, M.S.M. Saifullah, R. Ganesan and B. Gopalan, Nanoscale Adv., 2, 5384 (2020); https://doi.org/10.1039/D0NA00639D
- M.J. Vaidya, S.M. Kulkarni and R.V. Chaudhari, Org. Process Res. Dev., 7, 202 (2003); https://doi.org/10.1021/op025589w
- W. Fang and A. Riisager, Green Chem., 23, 670 (2021); https://doi.org/10.1039/D0GC03931D
- D. Wang and D. Astruc, Chem. Rev., 115, 6621 (2015); https://doi.org/10.1021/acs.chemrev.5b00203
- R.A.W. Johnstone, A.H. Wilby and I.D. Entwistle, Chem. Rev., 85, 129 (1985); https://doi.org/10.1021/cr00066a003
- C.K.P. Neeli, P. Puthiaraj, Y.R. Lee, Y.M. Chung, S.H. Baeck and W.S. Ahn, Catal. Today, 303, 227 (2018); https://doi.org/10.1016/j.cattod.2017.09.002
- Y.M. Lu, H.Z. Zhu, W.G. Li, B. Hu and S.H. Yu, J. Mater. Chem. A Mater. Energy Sustain., 1, 3783 (2013); https://doi.org/10.1039/c3ta00159h
- Z. Liu, L. Ning, K. Wang, L. Feng, W. Gu and X. Liu, Dalton Trans., 49, 1191 (2020); https://doi.org/10.1039/C9DT04051J
- K. Kuroda, T. Ishida and M. Haruta, J. Mol. Catal. Chem., 298, 7 (2009); https://doi.org/10.1016/j.molcata.2008.09.009
- W. Zhao, H. Li, H. Zhang, S. Yang and A. Riisager, Green Energy Environ., 8, 948 (2022); https://doi.org/10.1016/j.gee.2022.03.011
- S. Lau, D. Gasperini and R.L. Webster, Angew. Chem. Int. Ed., 60, 14272 (2021); https://doi.org/10.1002/anie.202010835
- U.B. Demirci, Int. J. Hydrogen Energy, 42, 9978 (2017); https://doi.org/10.1016/j.ijhydene.2017.01.154
- Ö. Metin, H. Can, K. Sendil and M.S. Gültekin, J. Colloid Interface Sci., 498, 378 (2017); https://doi.org/10.1016/j.jcis.2017.03.066
- S. Cheng, Y. Liu, Y. Zhao, X. Zhao, Z. Lang, H. Tan, T. Qiu and Y. Wang, Dalton Trans., 48, 17499 (2019); https://doi.org/10.1039/C9DT03838H
- X. Le, Z. Dong, X. Li, W. Zhang, M. Le and J. Ma, Catal. Commun., 59, 21 (2015); https://doi.org/10.1016/j.catcom.2014.09.029
- R. Grzeschik, D. Schäfer, T. Holtum, S. Küpper, A. Hoffmann and S. Schlücker, J. Phys. Chem. C, 124, 2939 (2020); https://doi.org/10.1021/acs.jpcc.9b07114
- P. Zhao, X. Feng, D. Huang, G. Yang and D. Astruc, Coord. Chem. Rev., 287, 114 (2015); https://doi.org/10.1016/j.ccr.2015.01.002
- H. Jiang, Q. Yan, R. Chen and W. Xing, Micropor. Mesopor. Mater., 225, 33 (2016); https://doi.org/10.1016/j.micromeso.2015.12.010
- A. Bavykina, N. Kolobov, I.S. Khan, J.A. Bau, A. Ramirez and J. Gascon, Chem. Rev., 120, 8468 (2020); https://doi.org/10.1021/acs.chemrev.9b00685
- H. Konnerth, B.M. Matsagar, S.S. Chen, M.H.G. Prechtl, F.K. Shieh and K.C.W. Wu, Coord. Chem. Rev., 416, 213319 (2020); https://doi.org/10.1016/j.ccr.2020.213319
- P.V. Ramachandran and P.D. Gagare, Inorg. Chem., 46, 7810 (2007); https://doi.org/10.1021/ic700772a
- S. Mounika and A. Swamy, J. Chem. Res., (Communicated).
- J. Liu, H. Yu and L. Wang, Appl. Catal. A Gen., 599, 117605 (2020); https://doi.org/10.1016/j.apcata.2020.117605
- M. Ismail, M.I. Khan, S.B. Khan, M.A. Khan, K. Akhtar and A.M. Asiri, J. Mol. Liq., 260, 78 (2018); https://doi.org/10.1016/j.molliq.2018.03.058
- S. Haider, T. Kamal, S.B. Khan, M. Omer, A. Haider, F.U. Khan and A.M. Asiri, Appl. Surf. Sci., 387, 1154 (2016); https://doi.org/10.1016/j.apsusc.2016.06.133
- T.R. Somo, T.C. Maponya, M.W. Davids, M.J. Hato, M.V. Lototskyy and K.D. Modibane, Metals, 10, 562 (2020); https://doi.org/10.3390/met10050562
- V. Krishnaveni, E. Dmello, K. Basavaiah, D. Samsonu, D.A. Rambhia and S. Babu, Eur. J. Inorg. Chem., 25, e202200460 (2022); https://doi.org/10.1002/ejic.202200460
- J. Du, J. Chen, H. Xia, Y. Zhao, F. Wang, H. Liu, W. Zhou and B. Wang, ChemCatChem, 12, 2426 (2020); https://doi.org/10.1002/cctc.201902391
- C. Yu, J. Fu, M. Muzzio, T. Shen, D. Su, J. Zhu and S. Sun, Chem. Mater., 29, 1413 (2017); https://doi.org/10.1021/acs.chemmater.6b05364
- Y.H. Zhou, Q. Yang, Y.Z. Chen and H.L. Jiang, Chem. Commun., 53, 12361 (2017); https://doi.org/10.1039/C7CC06530B
- J. Du, J. Hou, B. Li, R. Qin, C. Xu and H. Liu, J. Alloys Compd., 815, 152372 (2020); https://doi.org/10.1016/j.jallcom.2019.152372
- G. Wu, X. Liang, L. Zhang, Z. Tang, M. Al-Mamun, H. Zhao and X. Su, ACS Appl. Mater. Interfaces, 9, 18207 (2017); https://doi.org/10.1021/acsami.7b03120
- Y. Bai, Q. Wang, C. Du, T. Bu, Y. Liu, X. Sun, W. Luo, R. Li, Y. Zhao, X. Zheng and L. Wang, J. Colloid Interface Sci., 553, 768 (2019); https://doi.org/10.1016/j.jcis.2019.06.079
- K. Revathi, S. Palantavida and B.K. Vijayan, Mater. Today Proc., 9, 587 (2019); https://doi.org/10.1016/j.matpr.2018.10.379
- W. Wu, M. Lei, S. Yang, L. Zhou, L. Liu, X. Xiao, C. Jiang and V.A.L. Roy, J. Mater. Chem. A Mater. Energy Sustain., 3, 3450 (2015); https://doi.org/10.1039/C4TA06567K
- Y. Ma, Y. Zhu, H. Yue, G. Jiang and D. Wu, Mater. Res. Express, 9, 075006 (2022); https://doi.org/10.1088/2053-1591/ac80a5
- N. Toyama, H. Kimura, N. Matsumoto, S. Kamei, D.N. Futaba, N. Terui and S. Furukawa, Nanotechnology, 33, 065707 (2022); https://doi.org/10.1088/1361-6528/ac353f
- J. Jiang, G.H. Gunasekar, S. Park, S.H. Kim, S. Yoon and L. Piao, Mater. Res. Bull., 100, 184 (2018); https://doi.org/10.1016/j.materresbull.2017.12.018
References
M.I. Din, R. Khalid, Z. Hussain, T. Hussain, A. Mujahid, J. Najeeb and F. Izhar, Crit. Rev. Anal. Chem., 50, 322 (2020); https://doi.org/10.1080/10408347.2019.1637241
K.S. Ju and R.E. Parales, Microbiol. Mol. Biol. Rev., 74, 250 (2010); https://doi.org/10.1128/MMBR.00006-10
X. Zhang, L. Chen, Y. Liu and Q. Duan, Catalysts, 11, 1336 (2021); https://doi.org/10.3390/catal11111336
Y. Ji, Y. Shi, Y. Yang, P. Yang, L. Wang, J. Lu, J. Li, L. Zhou, C. Ferronato and J.M. Chovelon, J. Hazard. Mater., 361, 152 (2019); https://doi.org/10.1016/j.jhazmat.2018.08.083
Y. Shaoqing, H. Jun and W. Jianlong, Radiat. Phys. Chem., 79, 1039 (2010); https://doi.org/10.1016/j.radphyschem.2010.05.008
J.-Y. Lin, J. Lee, W.D. Oh, E. Kwon, Y.-C. Tsai, S. Phattarapattamawong, G. Lisak, C. Hu and K.-Y.A. Lin, J. Colloid Interface Sci., 602, 95 (2021); https://doi.org/10.1016/j.jcis.2021.05.098
K.B. Narayanan and N. Sakthivel, J. Hazard. Mater., 189, 519 (2011); https://doi.org/10.1016/j.jhazmat.2011.02.069
D. Toledano Garcia, L.Y. Ozer, F. Parrino, M. Ahmed, G.P. Brudecki, S.W. Hasan and G. Palmisano, Chemosphere, 209, 534 (2018); https://doi.org/10.1016/j.chemosphere.2018.05.197
S.R. Subashchandrabose, K. Venkateswarlu, K. Krishnan, R. Naidu, R. Lockington and M. Megharaj, J. Hazard. Mater., 347, 176 (2018); https://doi.org/10.1016/j.jhazmat.2017.12.063
M. Guzman, M. Estrada, S. Miridonov and A. Simakov, Micropor. Mesopor. Mater., 278, 241 (2019); https://doi.org/10.1016/j.micromeso.2018.11.020
L.L. Bo, Y.B. Zhang, X. Quan and B. Zhao, J. Hazard. Mater., 153, 1201 (2008); https://doi.org/10.1016/j.jhazmat.2007.09.082
N. Modirshahla, M.A. Behnajady and S. Mohammadi-Aghdam, J. Hazard. Mater., 154, 778 (2008); https://doi.org/10.1016/j.jhazmat.2007.10.120
H. Zhang, C. Fei, D. Zhang and F. Tang, J. Hazard. Mater., 145, 227 (2007); https://doi.org/10.1016/j.jhazmat.2006.11.016
P. Cañizares, C. Sáez, J. Lobato and M.A. Rodrigo, Ind. Eng. Chem. Res., 43, 1944 (2004); https://doi.org/10.1021/ie034025t
T. Wi-Afedzi, F.Y. Yeoh, M.T. Yang, A.C.K. Yip and K.Y.A. Lin, Sep. Purif. Technol., 218, 138 (2019); https://doi.org/10.1016/j.seppur.2019.02.047
A.M. Tafesh and J. Weiguny, Chem. Rev., 96, 2035 (1996); https://doi.org/10.1021/cr950083f
R. Mallampati and S. Valiyaveettil, ACS Sustain. Chem. Eng., 2, 855 (2014); https://doi.org/10.1021/sc4004899
T. Komatsu and T. Hirose, Appl. Catal. A Gen., 276, 95 (2004); https://doi.org/10.1016/j.apcata.2004.07.044
C.V. Rode, M.J. Vaidya, R. Jaganathan and R.V. Chaudhari, Chem. Eng. Sci., 56, 1299 (2001); https://doi.org/10.1016/S0009-2509(00)00352-3
M.L. Kantam, R. Chakravarti, U. Pal, B. Sreedhar and S. Bhargava, Adv. Synth. Catal., 350, 822 (2008); https://doi.org/10.1002/adsc.200800018
H. Lu, H. Yin, Y. Liu, T. Jiang and L. Yu, Catal. Commun., 10, 313 (2008); https://doi.org/10.1016/j.catcom.2008.09.015
H. Liu, J. Deng and W. Li, Catal. Lett., 137, 261 (2010); https://doi.org/10.1007/s10562-010-0362-8
D. Patra, S.R. Nalluri, H.R. Tan, M.S.M. Saifullah, R. Ganesan and B. Gopalan, Nanoscale Adv., 2, 5384 (2020); https://doi.org/10.1039/D0NA00639D
M.J. Vaidya, S.M. Kulkarni and R.V. Chaudhari, Org. Process Res. Dev., 7, 202 (2003); https://doi.org/10.1021/op025589w
W. Fang and A. Riisager, Green Chem., 23, 670 (2021); https://doi.org/10.1039/D0GC03931D
D. Wang and D. Astruc, Chem. Rev., 115, 6621 (2015); https://doi.org/10.1021/acs.chemrev.5b00203
R.A.W. Johnstone, A.H. Wilby and I.D. Entwistle, Chem. Rev., 85, 129 (1985); https://doi.org/10.1021/cr00066a003
C.K.P. Neeli, P. Puthiaraj, Y.R. Lee, Y.M. Chung, S.H. Baeck and W.S. Ahn, Catal. Today, 303, 227 (2018); https://doi.org/10.1016/j.cattod.2017.09.002
Y.M. Lu, H.Z. Zhu, W.G. Li, B. Hu and S.H. Yu, J. Mater. Chem. A Mater. Energy Sustain., 1, 3783 (2013); https://doi.org/10.1039/c3ta00159h
Z. Liu, L. Ning, K. Wang, L. Feng, W. Gu and X. Liu, Dalton Trans., 49, 1191 (2020); https://doi.org/10.1039/C9DT04051J
K. Kuroda, T. Ishida and M. Haruta, J. Mol. Catal. Chem., 298, 7 (2009); https://doi.org/10.1016/j.molcata.2008.09.009
W. Zhao, H. Li, H. Zhang, S. Yang and A. Riisager, Green Energy Environ., 8, 948 (2022); https://doi.org/10.1016/j.gee.2022.03.011
S. Lau, D. Gasperini and R.L. Webster, Angew. Chem. Int. Ed., 60, 14272 (2021); https://doi.org/10.1002/anie.202010835
U.B. Demirci, Int. J. Hydrogen Energy, 42, 9978 (2017); https://doi.org/10.1016/j.ijhydene.2017.01.154
Ö. Metin, H. Can, K. Sendil and M.S. Gültekin, J. Colloid Interface Sci., 498, 378 (2017); https://doi.org/10.1016/j.jcis.2017.03.066
S. Cheng, Y. Liu, Y. Zhao, X. Zhao, Z. Lang, H. Tan, T. Qiu and Y. Wang, Dalton Trans., 48, 17499 (2019); https://doi.org/10.1039/C9DT03838H
X. Le, Z. Dong, X. Li, W. Zhang, M. Le and J. Ma, Catal. Commun., 59, 21 (2015); https://doi.org/10.1016/j.catcom.2014.09.029
R. Grzeschik, D. Schäfer, T. Holtum, S. Küpper, A. Hoffmann and S. Schlücker, J. Phys. Chem. C, 124, 2939 (2020); https://doi.org/10.1021/acs.jpcc.9b07114
P. Zhao, X. Feng, D. Huang, G. Yang and D. Astruc, Coord. Chem. Rev., 287, 114 (2015); https://doi.org/10.1016/j.ccr.2015.01.002
H. Jiang, Q. Yan, R. Chen and W. Xing, Micropor. Mesopor. Mater., 225, 33 (2016); https://doi.org/10.1016/j.micromeso.2015.12.010
A. Bavykina, N. Kolobov, I.S. Khan, J.A. Bau, A. Ramirez and J. Gascon, Chem. Rev., 120, 8468 (2020); https://doi.org/10.1021/acs.chemrev.9b00685
H. Konnerth, B.M. Matsagar, S.S. Chen, M.H.G. Prechtl, F.K. Shieh and K.C.W. Wu, Coord. Chem. Rev., 416, 213319 (2020); https://doi.org/10.1016/j.ccr.2020.213319
P.V. Ramachandran and P.D. Gagare, Inorg. Chem., 46, 7810 (2007); https://doi.org/10.1021/ic700772a
S. Mounika and A. Swamy, J. Chem. Res., (Communicated).
J. Liu, H. Yu and L. Wang, Appl. Catal. A Gen., 599, 117605 (2020); https://doi.org/10.1016/j.apcata.2020.117605
M. Ismail, M.I. Khan, S.B. Khan, M.A. Khan, K. Akhtar and A.M. Asiri, J. Mol. Liq., 260, 78 (2018); https://doi.org/10.1016/j.molliq.2018.03.058
S. Haider, T. Kamal, S.B. Khan, M. Omer, A. Haider, F.U. Khan and A.M. Asiri, Appl. Surf. Sci., 387, 1154 (2016); https://doi.org/10.1016/j.apsusc.2016.06.133
T.R. Somo, T.C. Maponya, M.W. Davids, M.J. Hato, M.V. Lototskyy and K.D. Modibane, Metals, 10, 562 (2020); https://doi.org/10.3390/met10050562
V. Krishnaveni, E. Dmello, K. Basavaiah, D. Samsonu, D.A. Rambhia and S. Babu, Eur. J. Inorg. Chem., 25, e202200460 (2022); https://doi.org/10.1002/ejic.202200460
J. Du, J. Chen, H. Xia, Y. Zhao, F. Wang, H. Liu, W. Zhou and B. Wang, ChemCatChem, 12, 2426 (2020); https://doi.org/10.1002/cctc.201902391
C. Yu, J. Fu, M. Muzzio, T. Shen, D. Su, J. Zhu and S. Sun, Chem. Mater., 29, 1413 (2017); https://doi.org/10.1021/acs.chemmater.6b05364
Y.H. Zhou, Q. Yang, Y.Z. Chen and H.L. Jiang, Chem. Commun., 53, 12361 (2017); https://doi.org/10.1039/C7CC06530B
J. Du, J. Hou, B. Li, R. Qin, C. Xu and H. Liu, J. Alloys Compd., 815, 152372 (2020); https://doi.org/10.1016/j.jallcom.2019.152372
G. Wu, X. Liang, L. Zhang, Z. Tang, M. Al-Mamun, H. Zhao and X. Su, ACS Appl. Mater. Interfaces, 9, 18207 (2017); https://doi.org/10.1021/acsami.7b03120
Y. Bai, Q. Wang, C. Du, T. Bu, Y. Liu, X. Sun, W. Luo, R. Li, Y. Zhao, X. Zheng and L. Wang, J. Colloid Interface Sci., 553, 768 (2019); https://doi.org/10.1016/j.jcis.2019.06.079
K. Revathi, S. Palantavida and B.K. Vijayan, Mater. Today Proc., 9, 587 (2019); https://doi.org/10.1016/j.matpr.2018.10.379
W. Wu, M. Lei, S. Yang, L. Zhou, L. Liu, X. Xiao, C. Jiang and V.A.L. Roy, J. Mater. Chem. A Mater. Energy Sustain., 3, 3450 (2015); https://doi.org/10.1039/C4TA06567K
Y. Ma, Y. Zhu, H. Yue, G. Jiang and D. Wu, Mater. Res. Express, 9, 075006 (2022); https://doi.org/10.1088/2053-1591/ac80a5
N. Toyama, H. Kimura, N. Matsumoto, S. Kamei, D.N. Futaba, N. Terui and S. Furukawa, Nanotechnology, 33, 065707 (2022); https://doi.org/10.1088/1361-6528/ac353f
J. Jiang, G.H. Gunasekar, S. Park, S.H. Kim, S. Yoon and L. Piao, Mater. Res. Bull., 100, 184 (2018); https://doi.org/10.1016/j.materresbull.2017.12.018