This work is licensed under a Creative Commons Attribution 4.0 International License.
Silver-Alumina Impregnated Maghemite/Magnetite Nanocomposites for Effective Removal of Chromium(VI) from the Tannery Discharge
Corresponding Author(s) : Kistan Andiyappan
Asian Journal of Chemistry,
Vol. 35 No. 8 (2023): Vol 35 Issue 8, 2023
Abstract
The chromium(VI) ions present in the tannery waste was efficiently remove by using silver-alumina impregnated maghemite/magnetite nanocomposites as adsorbents. The as-synthesized adsorbents were characterized by XRD, SEM-EDAX, HR-TEM and FT-IR techniques. The adsorption process was found to be pH, time, dosage of adsorbent and temperature dependent. The adsorption data appropriate well with the pseudo-first-order kinetics, pseudo-second-order kinetics Langmuir and Freundlich isotherms. Among the two synthesized nanoabsorbents, the silver-alumina impregnated magnetite (SAMG) nanocomposite was found to be most effective absorbent, and its maximum chromium removal efficiency was achieved to be 98.81% within 2 h at a pH of 3.0 and at dosage of 0.5 g/L.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- U.O. Aigbe and O.A. Osibote, J. Environ. Chem. Eng., 8, 104503 (2020); https://doi.org/10.1016/j.jece.2020.104503
- O. Agboola, O.S.I. Fayomi, A. Ayodeji, A.O. Ayeni, E.E. Alagbe, S.E. Sanni, E.E. Okoro, L. Moropeng, R. Sadiku, K.W. Kupolati and B.A. Oni, Membranes, 11, 139 (2021); https://doi.org/10.3390/membranes11020139
- P. Sharma, D. Dutta, A. Udayan and S. Kumar, J. Environ. Chem. Eng., 9, 106673 (2021); https://doi.org/10.1016/j.jece.2021.106673
- M.K. Bharti, S. Gupta, S. Chalia, I. Garg, P. Thakur and A. Thakur, J. Supercond. Nov. Magn., 33, 3651 (2020); https://doi.org/10.1007/s10948-020-05657-1
- K.Z. Elwakeel, A.M. Elgarahy, Z.A. Khan, M.S. Almughamisi and A.S. Al-Bogami, Mater. Adv., 1, 1546 (2020); https://doi.org/10.1039/D0MA00153H
- M.J. Hato, T.C. Maponya, K.E. Ramohlola, K.D. Modibane, A. Maity, G.R. Monama, K. Makgopa and A. Bello, Polymer-Based Magnetic Nanocomposites for the Removal of Highly Toxic Hexavalent Chromium from Aqueous Solutions, In: Advanced Nanostructured Materials for Environmental Remediation, Springer International Publishing, Chap. 8, pp. 189-227 (2019).
- N.R. Mizyed, Environ. Sci. Policy, 25, 186 (2013); https://doi.org/10.1016/j.envsci.2012.10.016
- B. Tansel, Recent Pat. Chem. Eng., 1, 17 (2008); https://doi.org/10.2174/2211334710801010017
- S. Liu, Y. Gu, S. Wang, Y. Zhang, Y. Fang, D.M. Johnson and Y. Huang, Chin. Sci. Bull., 58, 2340 (2013); https://doi.org/10.1007/s11434-013-5784-4
- M.M. Kabir, N. Nahar, M.M. Akter, F. Alam, B.H. Gilroyed, M.M. Misu, M. Didar-ul-Alam, M. Hakim, L. Tijing and H.K. Shon, J. Water Process Eng., 52, 103578 (2023); https://doi.org/10.1016/j.jwpe.2023.103578
- M.M. da Silva, J.M.W. Duarte Neto, B.V. Barros Regueira, M.T.T. do Couto, R.V. da Silva Sobral, A.E. Sales Conniff, R.M.P. Brandão Costa, M.C. de B. Lira Nogueira, N.P. da Silva Santos, L. Pastrana, A.C. Lima Leite, A. Converti, T.P. Nascimento and A.L. Figueiredo Porto, Protein Expr. Purif., 192, 106044 (2022); https://doi.org/10.1016/j.pep.2022.106044
- J. Fito, M. Abewaa and T. Nkambule, Appl. Water Sci., 13, 78 (2023); https://doi.org/10.1007/s13201-023-01880-y
- S.C.N. Tang and I.M.C. Lo, Water Res., 47, 2613 (2013); https://doi.org/10.1016/j.watres.2013.02.039
- A.T. Abeto, B.S. Mustafa, B.A. Bekele and K.W. Firomsa, J. Environ. Public Health, 2023, 5663261 (2023); https://doi.org/10.1155/2023/5663261
- C. Baresel, V. Schaller, C. Jonasson, C. Johansson, R. Bordes, V. Chauhan, A. Sugunan, J. Sommertune and S. Welling, Heliyon, 5, e02325 (2019); https://doi.org/10.1016/j.heliyon.2019.e02325
- J. Fito, S. Tibebu and T.T. Nkambule, BMC Chem., 17, 4 (2023); https://doi.org/10.1186/s13065-023-00913-6
- A. Kalsoom, N. Jamil, S.M.U. Hassan, J.A. Khan and R. Batool, Curr. Microbiol., 80, 99 (2023); https://doi.org/10.1007/s00284-023-03194-3
- X. Qu, P.J.J. Alvarez and Q. Li, Water Res., 47, 3931 (2013); https://doi.org/10.1016/j.watres.2012.09.058
- M.D. Yahya, K.S. Obayomi, M.B. Abdulkadir, Y.A. Iyaka and A.G. Olugbenga, Water Sci. Eng., 13, 202 (2020); https://doi.org/10.1016/j.wse.2020.09.007
- Ö. Madenli, C. Akarsu and E.Ü. Deveci, Ceram. Int., 49, 16440 (2023); https://doi.org/10.1016/j.ceramint.2023.02.005
- T. Rasheed, J. Clean. Prod., 362, 132338 (2022); https://doi.org/10.1016/j.jclepro.2022.132338
- M. Tumolo, V. Ancona, D.D. Paola, D. Losacco, C. Campanale, C. Massarelli and V.F. Uricchio, Int. J. Environ. Res. Public Health, 17, 5438 (2020); https://doi.org/10.3390/ijerph17155438
- K. Sathya, K. Nagarajan, G.C. Geor Malar, S. Rajalakshmi and P. Raja Lakshmi, Appl. Water Sci., 12, 70 (2022); https://doi.org/10.1007/s13201-022-01594-7
- S. Rajendran, A.K. Priya, P. Senthil Kumar, T.K.A. Hoang, K. Sekar, K.Y. Chong, K.S. Khoo, H.S. Ng and P.L. Show, Chemosphere, 303, 135146 (2022); https://doi.org/10.1016/j.chemosphere.2022.135146
- R. Yousef, H. Qiblawey and M.H. El-Naas, Processes, 8, 1657 (2020); https://doi.org/10.3390/pr8121657
- T.A. Aragaw, F.M. Bogale and B.A. Aragaw, J. Saudi Chem. Soc., 25, 101280 (2021); https://doi.org/10.1016/j.jscs.2021.101280
- F.F. Lo, K.-W. Kow, F. Kung, F. Ahamed, P.-L. Kiew, S.-P. Yeap, H.-S. Chua, C.-H. Chan, R. Yusoff and Y.K. Ho, Sci. Total Environ., 780, 146337 (2021); https://doi.org/10.1016/j.scitotenv.2021.146337
- E.A. Setiadi, Rahmat, S. Simbolon, M. Yunus, C. Kurniawan, A.P. Tetuko1, S. Zelviani, Rahmaniah and P. Sebayang, J. Phys.: Conf. Ser., 979, 012064 (2018); https://doi.org/10.1088/1742-6596/979/1/012064
- F. Moradnia, S.T. Fardood, A. Ramazani, B. Min, S.W. Joo and R.S. Varma, J. Clean. Prod., 288, 125632 (2021); https://doi.org/10.1016/j.jclepro.2020.125632
- Z. Akchiche, A.B. Abba and S. Saggai, Algerian J. Chem. Eng., 1, 8 (2021); https://doi.org/10.5281/zenodo.4458444
- T. Castelo-Grande, P.A. Augusto, J. Rico, J. Marcos, R. Iglesias, L. Hernández and D. Barbosa, J. Environ. Manage., 281, 111872 (2021); https://doi.org/10.1016/j.jenvman.2020.111872
- T. Castelo-Grande, P.A. Augusto, J. Rico, J. Marcos, R. Iglesias, L. Hernández and D. Barbosa, J. Environ. Manage., 285, 112177 (2021); https://doi.org/10.1016/j.jenvman.2021.112177
- M.A. Kiser, P. Westerhoff, T. Benn, Y. Wang, J. Pérez-Rivera and K. Hristovski, Environ. Sci. Technol., 43, 6757 (2009); https://doi.org/10.1021/es901102n
- Y.K. Gun’ko and D.F. Brougham, in Eds.: S.R. Kumar, Magnetic Nanomaterials as MRI Contrast Agents, In: Magnetic Nanomaterials, John Wiley & Sons, Inc. (2009).
References
U.O. Aigbe and O.A. Osibote, J. Environ. Chem. Eng., 8, 104503 (2020); https://doi.org/10.1016/j.jece.2020.104503
O. Agboola, O.S.I. Fayomi, A. Ayodeji, A.O. Ayeni, E.E. Alagbe, S.E. Sanni, E.E. Okoro, L. Moropeng, R. Sadiku, K.W. Kupolati and B.A. Oni, Membranes, 11, 139 (2021); https://doi.org/10.3390/membranes11020139
P. Sharma, D. Dutta, A. Udayan and S. Kumar, J. Environ. Chem. Eng., 9, 106673 (2021); https://doi.org/10.1016/j.jece.2021.106673
M.K. Bharti, S. Gupta, S. Chalia, I. Garg, P. Thakur and A. Thakur, J. Supercond. Nov. Magn., 33, 3651 (2020); https://doi.org/10.1007/s10948-020-05657-1
K.Z. Elwakeel, A.M. Elgarahy, Z.A. Khan, M.S. Almughamisi and A.S. Al-Bogami, Mater. Adv., 1, 1546 (2020); https://doi.org/10.1039/D0MA00153H
M.J. Hato, T.C. Maponya, K.E. Ramohlola, K.D. Modibane, A. Maity, G.R. Monama, K. Makgopa and A. Bello, Polymer-Based Magnetic Nanocomposites for the Removal of Highly Toxic Hexavalent Chromium from Aqueous Solutions, In: Advanced Nanostructured Materials for Environmental Remediation, Springer International Publishing, Chap. 8, pp. 189-227 (2019).
N.R. Mizyed, Environ. Sci. Policy, 25, 186 (2013); https://doi.org/10.1016/j.envsci.2012.10.016
B. Tansel, Recent Pat. Chem. Eng., 1, 17 (2008); https://doi.org/10.2174/2211334710801010017
S. Liu, Y. Gu, S. Wang, Y. Zhang, Y. Fang, D.M. Johnson and Y. Huang, Chin. Sci. Bull., 58, 2340 (2013); https://doi.org/10.1007/s11434-013-5784-4
M.M. Kabir, N. Nahar, M.M. Akter, F. Alam, B.H. Gilroyed, M.M. Misu, M. Didar-ul-Alam, M. Hakim, L. Tijing and H.K. Shon, J. Water Process Eng., 52, 103578 (2023); https://doi.org/10.1016/j.jwpe.2023.103578
M.M. da Silva, J.M.W. Duarte Neto, B.V. Barros Regueira, M.T.T. do Couto, R.V. da Silva Sobral, A.E. Sales Conniff, R.M.P. Brandão Costa, M.C. de B. Lira Nogueira, N.P. da Silva Santos, L. Pastrana, A.C. Lima Leite, A. Converti, T.P. Nascimento and A.L. Figueiredo Porto, Protein Expr. Purif., 192, 106044 (2022); https://doi.org/10.1016/j.pep.2022.106044
J. Fito, M. Abewaa and T. Nkambule, Appl. Water Sci., 13, 78 (2023); https://doi.org/10.1007/s13201-023-01880-y
S.C.N. Tang and I.M.C. Lo, Water Res., 47, 2613 (2013); https://doi.org/10.1016/j.watres.2013.02.039
A.T. Abeto, B.S. Mustafa, B.A. Bekele and K.W. Firomsa, J. Environ. Public Health, 2023, 5663261 (2023); https://doi.org/10.1155/2023/5663261
C. Baresel, V. Schaller, C. Jonasson, C. Johansson, R. Bordes, V. Chauhan, A. Sugunan, J. Sommertune and S. Welling, Heliyon, 5, e02325 (2019); https://doi.org/10.1016/j.heliyon.2019.e02325
J. Fito, S. Tibebu and T.T. Nkambule, BMC Chem., 17, 4 (2023); https://doi.org/10.1186/s13065-023-00913-6
A. Kalsoom, N. Jamil, S.M.U. Hassan, J.A. Khan and R. Batool, Curr. Microbiol., 80, 99 (2023); https://doi.org/10.1007/s00284-023-03194-3
X. Qu, P.J.J. Alvarez and Q. Li, Water Res., 47, 3931 (2013); https://doi.org/10.1016/j.watres.2012.09.058
M.D. Yahya, K.S. Obayomi, M.B. Abdulkadir, Y.A. Iyaka and A.G. Olugbenga, Water Sci. Eng., 13, 202 (2020); https://doi.org/10.1016/j.wse.2020.09.007
Ö. Madenli, C. Akarsu and E.Ü. Deveci, Ceram. Int., 49, 16440 (2023); https://doi.org/10.1016/j.ceramint.2023.02.005
T. Rasheed, J. Clean. Prod., 362, 132338 (2022); https://doi.org/10.1016/j.jclepro.2022.132338
M. Tumolo, V. Ancona, D.D. Paola, D. Losacco, C. Campanale, C. Massarelli and V.F. Uricchio, Int. J. Environ. Res. Public Health, 17, 5438 (2020); https://doi.org/10.3390/ijerph17155438
K. Sathya, K. Nagarajan, G.C. Geor Malar, S. Rajalakshmi and P. Raja Lakshmi, Appl. Water Sci., 12, 70 (2022); https://doi.org/10.1007/s13201-022-01594-7
S. Rajendran, A.K. Priya, P. Senthil Kumar, T.K.A. Hoang, K. Sekar, K.Y. Chong, K.S. Khoo, H.S. Ng and P.L. Show, Chemosphere, 303, 135146 (2022); https://doi.org/10.1016/j.chemosphere.2022.135146
R. Yousef, H. Qiblawey and M.H. El-Naas, Processes, 8, 1657 (2020); https://doi.org/10.3390/pr8121657
T.A. Aragaw, F.M. Bogale and B.A. Aragaw, J. Saudi Chem. Soc., 25, 101280 (2021); https://doi.org/10.1016/j.jscs.2021.101280
F.F. Lo, K.-W. Kow, F. Kung, F. Ahamed, P.-L. Kiew, S.-P. Yeap, H.-S. Chua, C.-H. Chan, R. Yusoff and Y.K. Ho, Sci. Total Environ., 780, 146337 (2021); https://doi.org/10.1016/j.scitotenv.2021.146337
E.A. Setiadi, Rahmat, S. Simbolon, M. Yunus, C. Kurniawan, A.P. Tetuko1, S. Zelviani, Rahmaniah and P. Sebayang, J. Phys.: Conf. Ser., 979, 012064 (2018); https://doi.org/10.1088/1742-6596/979/1/012064
F. Moradnia, S.T. Fardood, A. Ramazani, B. Min, S.W. Joo and R.S. Varma, J. Clean. Prod., 288, 125632 (2021); https://doi.org/10.1016/j.jclepro.2020.125632
Z. Akchiche, A.B. Abba and S. Saggai, Algerian J. Chem. Eng., 1, 8 (2021); https://doi.org/10.5281/zenodo.4458444
T. Castelo-Grande, P.A. Augusto, J. Rico, J. Marcos, R. Iglesias, L. Hernández and D. Barbosa, J. Environ. Manage., 281, 111872 (2021); https://doi.org/10.1016/j.jenvman.2020.111872
T. Castelo-Grande, P.A. Augusto, J. Rico, J. Marcos, R. Iglesias, L. Hernández and D. Barbosa, J. Environ. Manage., 285, 112177 (2021); https://doi.org/10.1016/j.jenvman.2021.112177
M.A. Kiser, P. Westerhoff, T. Benn, Y. Wang, J. Pérez-Rivera and K. Hristovski, Environ. Sci. Technol., 43, 6757 (2009); https://doi.org/10.1021/es901102n
Y.K. Gun’ko and D.F. Brougham, in Eds.: S.R. Kumar, Magnetic Nanomaterials as MRI Contrast Agents, In: Magnetic Nanomaterials, John Wiley & Sons, Inc. (2009).