This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of IR Radiation on Electrochemical Hydrogen Activity of Flexible Carbon-Palladium Dispersed Polymer Electrodes
Corresponding Author(s) : R.N. Viswanath
Asian Journal of Chemistry,
Vol. 35 No. 7 (2023): Vol 35 Issue 7 (2023)
Abstract
Carbon-palladium dispersed polymer electrode sheets were synthesized and their hydrogen electrosorption (adsorption and absorption) and desorption activity on exposure to infra-red light radiation have been studied. Electrochemical experiments have been carried out in a standard glass electrochemical cell. The cyclic voltammograms of the carbon-palladium dispersed polymer electrode in 1 M NaCl electrolyte exhibit familiar features, namely hydrogen electrosorption and desorption peaks, adsorption of chlorine ions and a broad oxidative OH– adsorption and desorption regions. The analysis of the cyclic voltammetry results suggests that the net charge transferred corresponding to the hydrogen electrosorption and desorption processes across the carbon-palladium electrode increases when exposed to infrared radiation. The analysis of the cyclic voltammetry results further suggested that the enhanced hydrogen activity across the flexible polymer supported carbon-palladium electrode surfaces with infrared light radiation is largely ascribed due to the removal of chlorine ions that are adsorbed partially over the surface of palladium clusters in the flexible carbon-palladium dispersed polymer supported flexible electrodes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.G. Zoski, Handbook of Electrochemistry, Elsevier Science: New York, USA, edn. 1 (2007).
- P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008); https://doi.org/10.1038/nmat2297
- B.E. Conway, Electrochemical Supercapacitors, Kluwer Academic/ Plenum Publishers: New York (1999); https://doi.org/10.1007/978-1-4757-3058-6
- R. Chattot, I. Martens, M. Mirolo, M. Ronovsky, F. Russello, H. Isern, G. Braesch, E. Hornberger, P. Strasser, E. Sibert, M. Chatenet, V. Honkimäki and J. Drnec, J. Am. Chem. Soc., 143, 17068 (2021); https://doi.org/10.1021/jacs.1c06780
- H. Angerstein-Kozlowska, B.E. Conway, A. Hamelin and L. Stoicoviciu, J. Electroanal. Chem. Interfacial Electrochem., 228, 429 (1987); https://doi.org/10.1016/0022-0728(87)80122-5
- B.E. Conway, Prog. Surf. Sci., 49, 331 (1995); https://doi.org/10.1016/0079-6816(95)00040-6
- P. Simon and Y. Gogotsi, Philos. Trans. Royal Soc. Math. Phys. Eng. Sci., 368, 3457 (2010); https://doi.org/10.1098/rsta.2010.0109
- H. Kang, S. Jung, S. Jeong, G. Kim and K. Lee, Nature Commun., 6, 6503 (2015); https://doi.org/10.1038/ncomms7503
- I. Rubinstein and A.J. Bard, J. Am. Chem. Soc., 102, 6641 (1980); https://doi.org/10.1021/ja00541a080
- F.L.M. Sam, G.D.M.R. Dabera, K.T. Lai, C.A. Mills, L.J. Rozanski and S.R.P. Silva, Nanotechnology, 25, 345202 (2014); https://doi.org/10.1088/0957-4484/25/34/345202
- R.F. Lane and A.T. Hubbard, J. Phys. Chem., 77, 1401 (1973); https://doi.org/10.1021/j100630a018
- J. Weissmüller, R.N. Viswanath, D. Kramer, P. Zimmer, R. Würschum and H. Gleiter, Science, 300, 312 (2003); https://doi.org/10.1126/science.1081024
- D. Kramer, R.N. Viswanath and J. Weissmüller, Nano Lett., 4, 793 (2004); https://doi.org/10.1021/nl049927d
- R.N. Viswanath and J. Weissmüller, Acta Mater., 61, 6301 (2013); https://doi.org/10.1016/j.actamat.2013.07.013
- L.L. Miller and M.R. Van de Mark, J. Electroanal. Chem. Interfacial Electrochem., 88, 437 (1978); https://doi.org/10.1016/S0022-0728(78)80133-8
- I. Streeter, R. Baron and R.G. Compton, J. Phys. Chem. C, 111, 17008 (2007); https://doi.org/10.1021/jp076923z
- M. Shahinpoor and K.J. Kim, Smart Mater. Struct., 10, 819 (2001); https://doi.org/10.1088/0964-1726/10/4/327
- Yu.N. Gartstein, A.A. Zakhidov and R.H. Baughman, Phys. Rev. B Condens. Matter, 68, 115415 (2003); https://doi.org/10.1103/PhysRevB.68.115415
- C. Bianchini and P.K. Shen, Chem. Rev., 109, 4183 (2009); https://doi.org/10.1021/cr9000995
- A.T. Haug, R.E. White, J.W. Weidner, W. Huang, S. Shi, T. Stoner, N. Rana and J. Electrochem. Soc., 149, A280 (2002); https://doi.org/10.1149/1.1446082
- S.H. Lee, R.A. DeMayo, K.J. Takeuchi, E.S. Takeuchi and A.C. Marschilok, J. Electrochem. Soc., 162, A69 (2015); https://doi.org/10.1149/2.0351501jes
- F.L.M. Sam, G.D.M.R. Dabera, K.T. Lai, C.A. Mills, L.J. Rozanski and S.R.P. Silva, Nanotechnology, 25, 345202 (2014); https://doi.org/10.1088/0957-4484/25/34/345202
- A.T. Haug, R.E. White, J.W. Weidner, W. Huang, S. Shi, T. Stoner and N. Rana, J. Electrochem. Soc., 149, A280 (2002); https://doi.org/10.1149/1.1446082
- E. Antolini, S.C. Zignani, S.F. Santos and E.R. Gonzalez, Electrochim. Acta, 56, 2299 (2011); https://doi.org/10.1016/j.electacta.2010.11.101
- D. Mohapatra, S. Badrayyana and S. Parida, Mater. Chem. Phys., 174, 112 (2016); https://doi.org/10.1016/j.matchemphys.2016.02.057
- L. Bokobza, Polymer, 48, 4907 (2007); https://doi.org/10.1016/j.polymer.2007.06.046
- C.Z. Chen, Prog. Nat. Sci., 23, 245 (2013); https://doi.org/10.1016/j.pnsc.2013.04.001
- X. Yan, T. Xu, S. Xu, X. Wang and S. Yang, Nanotechnology, 15, 1759 (2004); https://doi.org/10.1088/0957-4484/15/12/011
- M. Zeiger, N. Jäckel, V.N. Mochalin and V. Presser, J. Mater. Chem. A Mater. Energy Sustain., 4, 3172 (2016); https://doi.org/10.1039/C5TA08295A
- F. Tuinstra and J.L. Koenig, J. Chem. Phys., 53, 1126 (1970); https://doi.org/10.1063/1.1674108
- X. Yan, T. Xu, S. Xu, X. Wang and S. Yang, Nanotechnology, 15, 1759 (2004); https://doi.org/10.1088/0957-4484/15/12/011
- M. Zeiger, N. Jäckel, D. Weingarth and V. Presser, Carbon, 94, 507 (2015); https://doi.org/10.1016/j.carbon.2015.07.028
- D. Lee, J. Seo, X. Zhu, J. Lee, H.-J. Shin, J.M. Cole, T. Shin, J. Lee, H. Lee and H. Su, Sci. Rep., 3, 2250 (2013); https://doi.org/10.1038/srep02250
- Y. Wang and A. Hu, J. Mater. Chem. C Mater. Opt. Electron. Devices, 2, 6921 (2014); https://doi.org/10.1039/C4TC00988F
- R.N. Viswanath, D. Kramer and J. Weissmüller, Langmuir, 21, 4604 (2005); https://doi.org/10.1021/la0473759
- R.N. Viswanath, D. Kramer and J. Weissmüller, Electrochim. Acta, 53, 2757 (2008); https://doi.org/10.1016/j.electacta.2007.10.049
- M. Arenz, V. Stamenkovic, T.J. Schmidt, K. Wandelt, P.N. Ross and N.M. Markovic, Surf. Sci., 523, 199 (2003); https://doi.org/10.1016/S0039-6028(02)02456-1
- E. Wicke and H. Brodowsky, Eds., G. Alefeld and J. Völkel, Springer-Verlag, pp. 73-155 (1978).
- S. Trasatti and O.A. Petrii, Pure Appl. Chem., 63, 711 (1991); https://doi.org/10.1351/pac199163050711
- N. Hoshi, K. Kagaya and Y. Hori, J. Electroanal. Chem., 485, 55 (2000); https://doi.org/10.1016/S0022-0728(00)00098-X
- Z. Radovic-Hrapovic and G. Jerkiewicz, J. Electroanal. Chem., 499, 61 (2001); https://doi.org/10.1016/S0022-0728(00)00478-2
- M. Hara, U. Linke and T. Wandlowski, Electrochim. Acta, 52, 5733 (2007); https://doi.org/10.1016/j.electacta.2006.11.048
- A. Zalineeva, S. Baranton, C. Coutanceau and G. Jerkiewicz, Sci. Adv., 3, e1600542 (2017); https://doi.org/10.1126/sciadv.1600542
- V.S. Bagotsky, Fundamentals of Electrochemistry, Thermodynamics of Electrochemical System, Wiley Interscience, John Wiley & Sons Inc. Publications, New Jersey, Chap. 3 (2006); https://doi.org/10.1002/047174199X
References
C.G. Zoski, Handbook of Electrochemistry, Elsevier Science: New York, USA, edn. 1 (2007).
P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008); https://doi.org/10.1038/nmat2297
B.E. Conway, Electrochemical Supercapacitors, Kluwer Academic/ Plenum Publishers: New York (1999); https://doi.org/10.1007/978-1-4757-3058-6
R. Chattot, I. Martens, M. Mirolo, M. Ronovsky, F. Russello, H. Isern, G. Braesch, E. Hornberger, P. Strasser, E. Sibert, M. Chatenet, V. Honkimäki and J. Drnec, J. Am. Chem. Soc., 143, 17068 (2021); https://doi.org/10.1021/jacs.1c06780
H. Angerstein-Kozlowska, B.E. Conway, A. Hamelin and L. Stoicoviciu, J. Electroanal. Chem. Interfacial Electrochem., 228, 429 (1987); https://doi.org/10.1016/0022-0728(87)80122-5
B.E. Conway, Prog. Surf. Sci., 49, 331 (1995); https://doi.org/10.1016/0079-6816(95)00040-6
P. Simon and Y. Gogotsi, Philos. Trans. Royal Soc. Math. Phys. Eng. Sci., 368, 3457 (2010); https://doi.org/10.1098/rsta.2010.0109
H. Kang, S. Jung, S. Jeong, G. Kim and K. Lee, Nature Commun., 6, 6503 (2015); https://doi.org/10.1038/ncomms7503
I. Rubinstein and A.J. Bard, J. Am. Chem. Soc., 102, 6641 (1980); https://doi.org/10.1021/ja00541a080
F.L.M. Sam, G.D.M.R. Dabera, K.T. Lai, C.A. Mills, L.J. Rozanski and S.R.P. Silva, Nanotechnology, 25, 345202 (2014); https://doi.org/10.1088/0957-4484/25/34/345202
R.F. Lane and A.T. Hubbard, J. Phys. Chem., 77, 1401 (1973); https://doi.org/10.1021/j100630a018
J. Weissmüller, R.N. Viswanath, D. Kramer, P. Zimmer, R. Würschum and H. Gleiter, Science, 300, 312 (2003); https://doi.org/10.1126/science.1081024
D. Kramer, R.N. Viswanath and J. Weissmüller, Nano Lett., 4, 793 (2004); https://doi.org/10.1021/nl049927d
R.N. Viswanath and J. Weissmüller, Acta Mater., 61, 6301 (2013); https://doi.org/10.1016/j.actamat.2013.07.013
L.L. Miller and M.R. Van de Mark, J. Electroanal. Chem. Interfacial Electrochem., 88, 437 (1978); https://doi.org/10.1016/S0022-0728(78)80133-8
I. Streeter, R. Baron and R.G. Compton, J. Phys. Chem. C, 111, 17008 (2007); https://doi.org/10.1021/jp076923z
M. Shahinpoor and K.J. Kim, Smart Mater. Struct., 10, 819 (2001); https://doi.org/10.1088/0964-1726/10/4/327
Yu.N. Gartstein, A.A. Zakhidov and R.H. Baughman, Phys. Rev. B Condens. Matter, 68, 115415 (2003); https://doi.org/10.1103/PhysRevB.68.115415
C. Bianchini and P.K. Shen, Chem. Rev., 109, 4183 (2009); https://doi.org/10.1021/cr9000995
A.T. Haug, R.E. White, J.W. Weidner, W. Huang, S. Shi, T. Stoner, N. Rana and J. Electrochem. Soc., 149, A280 (2002); https://doi.org/10.1149/1.1446082
S.H. Lee, R.A. DeMayo, K.J. Takeuchi, E.S. Takeuchi and A.C. Marschilok, J. Electrochem. Soc., 162, A69 (2015); https://doi.org/10.1149/2.0351501jes
F.L.M. Sam, G.D.M.R. Dabera, K.T. Lai, C.A. Mills, L.J. Rozanski and S.R.P. Silva, Nanotechnology, 25, 345202 (2014); https://doi.org/10.1088/0957-4484/25/34/345202
A.T. Haug, R.E. White, J.W. Weidner, W. Huang, S. Shi, T. Stoner and N. Rana, J. Electrochem. Soc., 149, A280 (2002); https://doi.org/10.1149/1.1446082
E. Antolini, S.C. Zignani, S.F. Santos and E.R. Gonzalez, Electrochim. Acta, 56, 2299 (2011); https://doi.org/10.1016/j.electacta.2010.11.101
D. Mohapatra, S. Badrayyana and S. Parida, Mater. Chem. Phys., 174, 112 (2016); https://doi.org/10.1016/j.matchemphys.2016.02.057
L. Bokobza, Polymer, 48, 4907 (2007); https://doi.org/10.1016/j.polymer.2007.06.046
C.Z. Chen, Prog. Nat. Sci., 23, 245 (2013); https://doi.org/10.1016/j.pnsc.2013.04.001
X. Yan, T. Xu, S. Xu, X. Wang and S. Yang, Nanotechnology, 15, 1759 (2004); https://doi.org/10.1088/0957-4484/15/12/011
M. Zeiger, N. Jäckel, V.N. Mochalin and V. Presser, J. Mater. Chem. A Mater. Energy Sustain., 4, 3172 (2016); https://doi.org/10.1039/C5TA08295A
F. Tuinstra and J.L. Koenig, J. Chem. Phys., 53, 1126 (1970); https://doi.org/10.1063/1.1674108
X. Yan, T. Xu, S. Xu, X. Wang and S. Yang, Nanotechnology, 15, 1759 (2004); https://doi.org/10.1088/0957-4484/15/12/011
M. Zeiger, N. Jäckel, D. Weingarth and V. Presser, Carbon, 94, 507 (2015); https://doi.org/10.1016/j.carbon.2015.07.028
D. Lee, J. Seo, X. Zhu, J. Lee, H.-J. Shin, J.M. Cole, T. Shin, J. Lee, H. Lee and H. Su, Sci. Rep., 3, 2250 (2013); https://doi.org/10.1038/srep02250
Y. Wang and A. Hu, J. Mater. Chem. C Mater. Opt. Electron. Devices, 2, 6921 (2014); https://doi.org/10.1039/C4TC00988F
R.N. Viswanath, D. Kramer and J. Weissmüller, Langmuir, 21, 4604 (2005); https://doi.org/10.1021/la0473759
R.N. Viswanath, D. Kramer and J. Weissmüller, Electrochim. Acta, 53, 2757 (2008); https://doi.org/10.1016/j.electacta.2007.10.049
M. Arenz, V. Stamenkovic, T.J. Schmidt, K. Wandelt, P.N. Ross and N.M. Markovic, Surf. Sci., 523, 199 (2003); https://doi.org/10.1016/S0039-6028(02)02456-1
E. Wicke and H. Brodowsky, Eds., G. Alefeld and J. Völkel, Springer-Verlag, pp. 73-155 (1978).
S. Trasatti and O.A. Petrii, Pure Appl. Chem., 63, 711 (1991); https://doi.org/10.1351/pac199163050711
N. Hoshi, K. Kagaya and Y. Hori, J. Electroanal. Chem., 485, 55 (2000); https://doi.org/10.1016/S0022-0728(00)00098-X
Z. Radovic-Hrapovic and G. Jerkiewicz, J. Electroanal. Chem., 499, 61 (2001); https://doi.org/10.1016/S0022-0728(00)00478-2
M. Hara, U. Linke and T. Wandlowski, Electrochim. Acta, 52, 5733 (2007); https://doi.org/10.1016/j.electacta.2006.11.048
A. Zalineeva, S. Baranton, C. Coutanceau and G. Jerkiewicz, Sci. Adv., 3, e1600542 (2017); https://doi.org/10.1126/sciadv.1600542
V.S. Bagotsky, Fundamentals of Electrochemistry, Thermodynamics of Electrochemical System, Wiley Interscience, John Wiley & Sons Inc. Publications, New Jersey, Chap. 3 (2006); https://doi.org/10.1002/047174199X