This work is licensed under a Creative Commons Attribution 4.0 International License.
Cellulose Adsorbent from Biocompatible Bamboo Chopsticks and ZnO for Removal of Chromium in Wastewater
Corresponding Author(s) : Suphawarat Thupsuri
Asian Journal of Chemistry,
Vol. 35 No. 7 (2023): Vol 35 Issue 7 (2023)
Abstract
The daily waste material of cellulose obtained from bamboo chopsticks was combined with ZnO to prepare an optimized adsorbent (Cel-ZnO) for the removal of Cr(VI) present in wastewater. This work investigated the adsorption of Cr(VI) by Cel-ZnO in comparison to cellulose (Cel). The influence of functional groups and the amount of sorbent on adsorption was studied by Fourier transform infrared (FTIR), scanning electron microscope (SEM) and thermogravimetric analysis (TGA). Moreover, the effects of pH, concentration, time and temperature on absorption were studied along with isotherm and kinetic studies. The optimum conditions for Cr(VI) adsorption were identified as 0.0050 g of Cel-ZnO adsorbent, 250 ppm initial concentration of Cr(VI) at a pH of 3 and adsorption time of 360 min at 30 ºC. The adsorption capacity of Cel was 91.18 mg/g and Cel-ZnO had an adsorption capacity of 197.26 mg/g. It can be concluded that both Cel and Cel-ZnO have good adsorption efficiencies for Cr(VI), with the latter having an additional advantage of reusability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Otwong, S. Jongmeewasin and T. Phenrat, J. Clean. Prod., 302, 126969 (2021); https://doi.org/10.1016/j.jclepro.2021.126969
- M.N. Uugwanga and N.A. Kgabi, Phys. Chem. Earth Parts ABC, 124, 103067 (2021); https://doi.org/10.1016/j.pce.2021.103067
- T. Li, Z. Qin, Y. Shen, X. Xu, N. Liu and Y. Zhang, Mater. Lett., 252, 130 (2019); https://doi.org/10.1016/j.matlet.2019.05.128
- H.B. Kim, J.G. Kim, S.H. Kim, E.E. Kwon and K. Baek, Environ. Pollut., 253, 231 (2019); https://doi.org/10.1016/j.envpol.2019.07.026
- E.J. Tomaszewski, S. Lee, J. Rudolph, H. Xu and M. Ginder-Vogel, Chem. Geol., 464, 101 (2017); https://doi.org/10.1016/j.chemgeo.2017.01.029
- M.K. Murthy, P. Khandayataray, S. Padhiary and D. Samal, Rev. Environ. Health (2022); https://doi.org/10.1515/reveh-2021-0139
- M.E. Mahmoud, M.F. Amira, M.M.H.M. Azab and A.M. Abdelfattah, Int. J. Biol. Macromol., 188, 879 (2021); https://doi.org/10.1016/j.ijbiomac.2021.08.092
- S. Sahu, N. Bishoyi and R.K. Patel, J. Ind. Eng. Chem., 99, 55 (2021); https://doi.org/10.1016/j.jiec.2021.03.041
- P.R. Choudhury, S. Majumdar, G.C. Sahoo, S. Saha and P. Mondal, Eng. J., 336, 570 (2018); https://doi.org/10.1016/j.cej.2017.12.062
- N. Kohila and P. Subramaniam, J. Environ. Chem. Eng., 5, 104376 (2020); https://doi.org/10.1016/j.jece.2020.104376
- M.Z.A. Zaimee, M.S. Sarjadi and M.L. Rahman, Water, 13, 2659 (2021); https://doi.org/10.3390/w13192659
- H. Zhou, H. Zhu, F. Xue, H. He and S. Wang, Chem. Eng. J., 385, 123879 (2020); https://doi.org/10.1016/j.cej.2019.123879
- C. Li, H. Ma, S. Venkateswaran and B.S. Hsiao, Chem. Eng. J., 389, 123458 (2020); https://doi.org/10.1016/j.cej.2019.123458
- P. Kumar and M.S. Chauhan, J. Environ. Chem. Eng., 7, 103218 (2019); https://doi.org/10.1016/j.jece.2019.103218
- M. Chigondo, H.K. Paumo, M. Bhaumik, K. Pillay and A. Maity, J. Mol. Liq., 275, 778 (2019); https://doi.org/10.1016/j.molliq.2018.11.032
- C. Rizzo, J.L. Andrews, J.W. Steed and F. D’Anna, J. Colloid Interface Sci., 548, 184 (2019); https://doi.org/10.1016/j.jcis.2019.04.034
- H. Ma, J. Yang, X. Gao, Z. Liu, X. Liu and Z. Xu, J. Hazard. Mater., 369, 550 (2019); https://doi.org/10.1016/j.jhazmat.2019.02.063
- A. Ali, S. Ambreen, Q. Maqbool, S. Naz, M.F. Shams, M. Ahmad, A.R. Phull and M. Zia, J. Phys. Chem. Solids, 98, 174 (2016); https://doi.org/10.1016/j.jpcs.2016.07.007
- N. Tavker, U. Gaur and M. Sharma, J. Environ. Chem. Eng., 8, 104027 (2020); https://doi.org/10.1016/j.jece.2020.104027
- T. Pan, Y. Liu, Z. Li, J. Fan, L. Wang, J. Liu and W. Shou, Sci. Total Environ., 737, 139818 (2020); https://doi.org/10.1016/j.scitotenv.2020.139818
- T. Huang, D. Song, G. Wang, G. Li, C. Geng, C. Yao, W. Liu and S. Zhang, J. Environ. Manage., 252, 109642 (2019); https://doi.org/10.1016/j.jenvman.2019.109642
- S. Karnjanakom and P. Maneechakr, J. Mol. Struct., 1186, 80 (2019); https://doi.org/10.1016/j.molstruc.2019.03.022
- J. Mei, H. Zhang, Z. Li and H. Ou, Carbohydr. Polym., 224, 115154 (2019); https://doi.org/10.1016/j.carbpol.2019.115154
- B. Tan, Y. Luo, X. Liang, S. Wang, X. Gao, Z. Zhang and Y. Fang, Micropor. Mesopor. Mater., 286, 141 (2019); https://doi.org/10.1016/j.micromeso.2019.05.039
- M. Nigam, S. Rajoriya, S. Rani Singh and P. Kumar, J. Environ. Chem. Eng., 7, 103188 (2019); https://doi.org/10.1016/j.jece.2019.103188
- W. Cai, M. Gu, W. Jin and J. Zhou, J. Alloys Compd., 777, 1304 (2019); https://doi.org/10.1016/j.jallcom.2018.11.070
- C. Wang, Y. Zhan, Y. Wu, X. Shi, Y. Du, Y. Luo and H. Deng, Int. J. Biol. Macromol., 183, 245 (2021); https://doi.org/10.1016/j.ijbiomac.2021.04.085
- L. Bai, X. Su, J. Feng and S. Ma, J. Clean. Prod., 320, 128723 (2021); https://doi.org/10.1016/j.jclepro.2021.128723
- Y. Yang, Y. Zhang, G. Wang, Z. Yang, J. Xian, Y. Yang, T. Li, Y. Pu, Y. Jia, Y. Li, Z. Cheng, S. Zhang and X. Xu, J. Environ. Chem. Eng., 9, 105407 (2021); https://doi.org/10.1016/j.jece.2021.105407
- X. Sun, L. Yang, Q. Li, J. Zhao, X. Li, X. Wang and H. Liu, Chem. Eng. J., 241, 175 (2014); https://doi.org/10.1016/j.cej.2013.12.051
- A. Pholosi, E.B. Naidoo and A.E. Ofomaja, Chem. Eng. Res. Des., 153, 806 (2020); https://doi.org/10.1016/j.cherd.2019.11.004
References
A. Otwong, S. Jongmeewasin and T. Phenrat, J. Clean. Prod., 302, 126969 (2021); https://doi.org/10.1016/j.jclepro.2021.126969
M.N. Uugwanga and N.A. Kgabi, Phys. Chem. Earth Parts ABC, 124, 103067 (2021); https://doi.org/10.1016/j.pce.2021.103067
T. Li, Z. Qin, Y. Shen, X. Xu, N. Liu and Y. Zhang, Mater. Lett., 252, 130 (2019); https://doi.org/10.1016/j.matlet.2019.05.128
H.B. Kim, J.G. Kim, S.H. Kim, E.E. Kwon and K. Baek, Environ. Pollut., 253, 231 (2019); https://doi.org/10.1016/j.envpol.2019.07.026
E.J. Tomaszewski, S. Lee, J. Rudolph, H. Xu and M. Ginder-Vogel, Chem. Geol., 464, 101 (2017); https://doi.org/10.1016/j.chemgeo.2017.01.029
M.K. Murthy, P. Khandayataray, S. Padhiary and D. Samal, Rev. Environ. Health (2022); https://doi.org/10.1515/reveh-2021-0139
M.E. Mahmoud, M.F. Amira, M.M.H.M. Azab and A.M. Abdelfattah, Int. J. Biol. Macromol., 188, 879 (2021); https://doi.org/10.1016/j.ijbiomac.2021.08.092
S. Sahu, N. Bishoyi and R.K. Patel, J. Ind. Eng. Chem., 99, 55 (2021); https://doi.org/10.1016/j.jiec.2021.03.041
P.R. Choudhury, S. Majumdar, G.C. Sahoo, S. Saha and P. Mondal, Eng. J., 336, 570 (2018); https://doi.org/10.1016/j.cej.2017.12.062
N. Kohila and P. Subramaniam, J. Environ. Chem. Eng., 5, 104376 (2020); https://doi.org/10.1016/j.jece.2020.104376
M.Z.A. Zaimee, M.S. Sarjadi and M.L. Rahman, Water, 13, 2659 (2021); https://doi.org/10.3390/w13192659
H. Zhou, H. Zhu, F. Xue, H. He and S. Wang, Chem. Eng. J., 385, 123879 (2020); https://doi.org/10.1016/j.cej.2019.123879
C. Li, H. Ma, S. Venkateswaran and B.S. Hsiao, Chem. Eng. J., 389, 123458 (2020); https://doi.org/10.1016/j.cej.2019.123458
P. Kumar and M.S. Chauhan, J. Environ. Chem. Eng., 7, 103218 (2019); https://doi.org/10.1016/j.jece.2019.103218
M. Chigondo, H.K. Paumo, M. Bhaumik, K. Pillay and A. Maity, J. Mol. Liq., 275, 778 (2019); https://doi.org/10.1016/j.molliq.2018.11.032
C. Rizzo, J.L. Andrews, J.W. Steed and F. D’Anna, J. Colloid Interface Sci., 548, 184 (2019); https://doi.org/10.1016/j.jcis.2019.04.034
H. Ma, J. Yang, X. Gao, Z. Liu, X. Liu and Z. Xu, J. Hazard. Mater., 369, 550 (2019); https://doi.org/10.1016/j.jhazmat.2019.02.063
A. Ali, S. Ambreen, Q. Maqbool, S. Naz, M.F. Shams, M. Ahmad, A.R. Phull and M. Zia, J. Phys. Chem. Solids, 98, 174 (2016); https://doi.org/10.1016/j.jpcs.2016.07.007
N. Tavker, U. Gaur and M. Sharma, J. Environ. Chem. Eng., 8, 104027 (2020); https://doi.org/10.1016/j.jece.2020.104027
T. Pan, Y. Liu, Z. Li, J. Fan, L. Wang, J. Liu and W. Shou, Sci. Total Environ., 737, 139818 (2020); https://doi.org/10.1016/j.scitotenv.2020.139818
T. Huang, D. Song, G. Wang, G. Li, C. Geng, C. Yao, W. Liu and S. Zhang, J. Environ. Manage., 252, 109642 (2019); https://doi.org/10.1016/j.jenvman.2019.109642
S. Karnjanakom and P. Maneechakr, J. Mol. Struct., 1186, 80 (2019); https://doi.org/10.1016/j.molstruc.2019.03.022
J. Mei, H. Zhang, Z. Li and H. Ou, Carbohydr. Polym., 224, 115154 (2019); https://doi.org/10.1016/j.carbpol.2019.115154
B. Tan, Y. Luo, X. Liang, S. Wang, X. Gao, Z. Zhang and Y. Fang, Micropor. Mesopor. Mater., 286, 141 (2019); https://doi.org/10.1016/j.micromeso.2019.05.039
M. Nigam, S. Rajoriya, S. Rani Singh and P. Kumar, J. Environ. Chem. Eng., 7, 103188 (2019); https://doi.org/10.1016/j.jece.2019.103188
W. Cai, M. Gu, W. Jin and J. Zhou, J. Alloys Compd., 777, 1304 (2019); https://doi.org/10.1016/j.jallcom.2018.11.070
C. Wang, Y. Zhan, Y. Wu, X. Shi, Y. Du, Y. Luo and H. Deng, Int. J. Biol. Macromol., 183, 245 (2021); https://doi.org/10.1016/j.ijbiomac.2021.04.085
L. Bai, X. Su, J. Feng and S. Ma, J. Clean. Prod., 320, 128723 (2021); https://doi.org/10.1016/j.jclepro.2021.128723
Y. Yang, Y. Zhang, G. Wang, Z. Yang, J. Xian, Y. Yang, T. Li, Y. Pu, Y. Jia, Y. Li, Z. Cheng, S. Zhang and X. Xu, J. Environ. Chem. Eng., 9, 105407 (2021); https://doi.org/10.1016/j.jece.2021.105407
X. Sun, L. Yang, Q. Li, J. Zhao, X. Li, X. Wang and H. Liu, Chem. Eng. J., 241, 175 (2014); https://doi.org/10.1016/j.cej.2013.12.051
A. Pholosi, E.B. Naidoo and A.E. Ofomaja, Chem. Eng. Res. Des., 153, 806 (2020); https://doi.org/10.1016/j.cherd.2019.11.004