This work is licensed under a Creative Commons Attribution 4.0 International License.
Effects of SbCl5, Ethylamine, Imidazole and 2-Methylimidazole on Redox and Structural Behaviours of Manganese(III) meso-5,10,15,20-tetrakis(4-pyridyl)porphyrin
Corresponding Author(s) : Nabam Tayum
Asian Journal of Chemistry,
Vol. 35 No. 7 (2023): Vol 35 Issue 7 (2023)
Abstract
A porphyrin compound manganese(III) meso-5,10,15,20-tetrakis(4-pyridyl)porphyrin, Mn(Py)4P containing manganese(III) and 4-pyridyl ligands was synthesized. The UV-visible spectrophotometry and cyclic voltammetry were used to investigate the axial ligand and the redox behaviours of Mn(Py)4P. This study investigates the reduction properties of Mn(Py)4P using primary amine, imidazole and 2-methylimidazole as axial ligands. Reduction of Mn(Py)4P leads to a shift in absorption bands, indicating the conversion from manganese(III) to manganese(II) porphyrin. The addition of primary amine results in a square pyramidal structure for Mn(II) porphyrin, while imidazole or 2-methylimidazole leads to the formation of tetragonal complexes. These changes in geometry result in a decrease in π-bonding. The observed spectral patterns support the involvement of axial ligands in the 5th and 6th positions of manganese(III) porphyrin. The cyclic voltammogram confirmed the alteration in geometry, indicating changes in the redox properties of compound. As a whole, the results of this study provide light on the ways where the behaviour of in which Mn(Py)4P can be altered by the presence of other molecules.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.M. Smith, Porphyrins In: J.A. McCleverty and T.J. Meyer, Comprehensive Coordination Chemistry II, Pergamon, p. 493 (2003); https://doi.org/10.1016/B0-08-043748-6/01050-1
- S.G. Afonso, R. Enríquez de Salamanca and A.M.C. Batlle, Braz. J. Med. Biol. Res., 32, 255 (1999); https://doi.org/10.1590/S0100-879X1999000300002
- Z. Liu, H. Li, Z. Tian, X. Liu, Y. Guo, J. He, Z. Wang, T. Zhou and Y. Liu, ChemPlusChem, 87, e202200156 (2022); https://doi.org/10.1002/cplu.202200156
- N. Tsolekile, S. Nelana and O.S. Oluwafemi, Molecules, 24, 2669 (2019); https://doi.org/10.3390/molecules24142669
- C.-Y. Huang, W.-L. Yeh and S.-H. Cheng, J. Electroanal. Chem., 577, 179 (2005); https://doi.org/10.1016/j.jelechem.2004.11.029
- K.D. Borah and J. Bhuyan, J. Coord. Chem., 72, 2251 (2019); https://doi.org/10.1080/00958972.2019.1654092
- L. Xu, H. Lei, Z. Zhang, Z. Yao, J. Li, Z. Yu and R. Cao, Phys. Chem. Chem. Phys., 19, 9755 (2017); https://doi.org/10.1039/C6CP08495H
- A.T. Singh and A. Lemtur, Spectrochim. Acta A Mol. Biomol. Spectrosc., 59, 1549 (2003); https://doi.org/10.1016/S1386-1425(02)00333-5
- J. Subramanian, V.P. Shedbalkar, A. Lemtur, R. Chakravorty and T.N. Saloi, J. Phys. Chem., 100, 4770 (1996); https://doi.org/10.1021/jp9511820
- A. Murugan, V. Thandiayyakone, S. Kumarasamy, C.R. Ravikumar, S. Muthaiah, M. Chakrabarty, P.T. Arasu, T. Rajkumar and H.S. Yadav, Asian J. Chem., 33, 26 (2020); https://doi.org/10.14233/ajchem.2021.22905
- V. Thandiayyakone, A. Murugan, C.R. Ravikumar, T. Rajkumar, P. Thillai Arasu, H.S. Yadav and P. Kotteeswaran, Mater. Today Proc., 47, 933 (2021); https://doi.org/10.1016/j.matpr.2021.04.621
- M. Liu and Y.O. Su, J. Electroanal. Chem., 426, 197 (1997); https://doi.org/10.1016/S0022-0728(96)04968-6
- V. Thandiayyakone, A. Murugan, C.R. Ravikumar, T. Rajkumar and H.S. Yadav, Res. J. Chem. Environ., 26, 8 (2022); https://doi.org/10.25303/2606rjce08014
- D.P. Goldberg, A.G. Montalban, A.J.P. White, D.J. Williams, A.G.M. Barrett and B.M. Hoffman, Inorg. Chem., 37, 2873 (1998); https://doi.org/10.1021/ic970624e
- M. Paramaguru, A. Murugan, E.R. Nagarajan, S. Kumarasamy, A. Manohar and A. Lemtur, Proceedings of National Seminar on Technologically Important Crystalline and Amorphous Solid (TICAS-2012), Department of Physics, Kalasalingam University, Krishnankoil, India, pp. 103-104, (2012).
- P. Tagliatesta, J. Li, M. Autret, E. Van Caemelbecke, A. Villard, F. D’Souza and K.M. Kadish, Inorg. Chem., 35, 5570 (1996); https://doi.org/10.1021/ic960148c
- A. Murugan, E.R. Nagarajan, A. Manohar, A. Kulandaisamy, A. Lemtur and L. Muthulaksmi, Int. J. Chemtech Res., 5, 1646 (2013).
- V. Thandiayyakone, A. Murugan, C.R. Ravikumar, T. Rajkumar, A. Kulandaisamy, I.U. Muzaddadi, A. Manohar, P.T. Arasu and M. Chakrabarty, Asian J. Chem., 35, 1341 (2023); https://doi.org/10.14233/ajchem.2023.27796
- N.M. Berezina, M.E. Klueva and M.I. Bazanov, Macroheterocycles, 10, 308 (2017); https://doi.org/10.6060/mhc170507b
- Z. Valicsek and O. Horvath, Microchem. J., 107, 47 (2013); https://doi.org/10.1016/j.microc.2012.07.002
References
K.M. Smith, Porphyrins In: J.A. McCleverty and T.J. Meyer, Comprehensive Coordination Chemistry II, Pergamon, p. 493 (2003); https://doi.org/10.1016/B0-08-043748-6/01050-1
S.G. Afonso, R. Enríquez de Salamanca and A.M.C. Batlle, Braz. J. Med. Biol. Res., 32, 255 (1999); https://doi.org/10.1590/S0100-879X1999000300002
Z. Liu, H. Li, Z. Tian, X. Liu, Y. Guo, J. He, Z. Wang, T. Zhou and Y. Liu, ChemPlusChem, 87, e202200156 (2022); https://doi.org/10.1002/cplu.202200156
N. Tsolekile, S. Nelana and O.S. Oluwafemi, Molecules, 24, 2669 (2019); https://doi.org/10.3390/molecules24142669
C.-Y. Huang, W.-L. Yeh and S.-H. Cheng, J. Electroanal. Chem., 577, 179 (2005); https://doi.org/10.1016/j.jelechem.2004.11.029
K.D. Borah and J. Bhuyan, J. Coord. Chem., 72, 2251 (2019); https://doi.org/10.1080/00958972.2019.1654092
L. Xu, H. Lei, Z. Zhang, Z. Yao, J. Li, Z. Yu and R. Cao, Phys. Chem. Chem. Phys., 19, 9755 (2017); https://doi.org/10.1039/C6CP08495H
A.T. Singh and A. Lemtur, Spectrochim. Acta A Mol. Biomol. Spectrosc., 59, 1549 (2003); https://doi.org/10.1016/S1386-1425(02)00333-5
J. Subramanian, V.P. Shedbalkar, A. Lemtur, R. Chakravorty and T.N. Saloi, J. Phys. Chem., 100, 4770 (1996); https://doi.org/10.1021/jp9511820
A. Murugan, V. Thandiayyakone, S. Kumarasamy, C.R. Ravikumar, S. Muthaiah, M. Chakrabarty, P.T. Arasu, T. Rajkumar and H.S. Yadav, Asian J. Chem., 33, 26 (2020); https://doi.org/10.14233/ajchem.2021.22905
V. Thandiayyakone, A. Murugan, C.R. Ravikumar, T. Rajkumar, P. Thillai Arasu, H.S. Yadav and P. Kotteeswaran, Mater. Today Proc., 47, 933 (2021); https://doi.org/10.1016/j.matpr.2021.04.621
M. Liu and Y.O. Su, J. Electroanal. Chem., 426, 197 (1997); https://doi.org/10.1016/S0022-0728(96)04968-6
V. Thandiayyakone, A. Murugan, C.R. Ravikumar, T. Rajkumar and H.S. Yadav, Res. J. Chem. Environ., 26, 8 (2022); https://doi.org/10.25303/2606rjce08014
D.P. Goldberg, A.G. Montalban, A.J.P. White, D.J. Williams, A.G.M. Barrett and B.M. Hoffman, Inorg. Chem., 37, 2873 (1998); https://doi.org/10.1021/ic970624e
M. Paramaguru, A. Murugan, E.R. Nagarajan, S. Kumarasamy, A. Manohar and A. Lemtur, Proceedings of National Seminar on Technologically Important Crystalline and Amorphous Solid (TICAS-2012), Department of Physics, Kalasalingam University, Krishnankoil, India, pp. 103-104, (2012).
P. Tagliatesta, J. Li, M. Autret, E. Van Caemelbecke, A. Villard, F. D’Souza and K.M. Kadish, Inorg. Chem., 35, 5570 (1996); https://doi.org/10.1021/ic960148c
A. Murugan, E.R. Nagarajan, A. Manohar, A. Kulandaisamy, A. Lemtur and L. Muthulaksmi, Int. J. Chemtech Res., 5, 1646 (2013).
V. Thandiayyakone, A. Murugan, C.R. Ravikumar, T. Rajkumar, A. Kulandaisamy, I.U. Muzaddadi, A. Manohar, P.T. Arasu and M. Chakrabarty, Asian J. Chem., 35, 1341 (2023); https://doi.org/10.14233/ajchem.2023.27796
N.M. Berezina, M.E. Klueva and M.I. Bazanov, Macroheterocycles, 10, 308 (2017); https://doi.org/10.6060/mhc170507b
Z. Valicsek and O. Horvath, Microchem. J., 107, 47 (2013); https://doi.org/10.1016/j.microc.2012.07.002