This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural, Optical, Electrical and Discharge Characteristics of PVA-ZnS Nanocomposite Polymer Electrolyte−Zn2+ Ion Conduction for Solid State Battery Applications
Corresponding Author(s) : R. Venugopal
Asian Journal of Chemistry,
Vol. 35 No. 7 (2023): Vol 35 Issue 7 (2023)
Abstract
Polyvinyl alcohol (PVA) based Zn2+ ion conducting solid polymer electrolyte was prepared using a solution-cast method. Measurements were taken utilizing X-ray diffraction (XRD) and Fourier transform infrared analysis (FT-IR) to investigate the structure. The optical absorption spectra were investigated in the 200-800 nm range in order to acquire information about the optical properties of the material. This data comprised the direct energy gap, indirect energy gap and optical absorption edge of the material. The direct optical energy gap for pure PVA lies at 6.08 eV, while PVA doped with zinc sulphide ranges from 5.28 to 5.68 eV for the different compositions. It was evident that the energy gaps and band edge values transferred to lower energies on doping with ZnS up to a dopant concentration of 92 wt.% of PVA and 8 wt.% of ZnS. For this study, the ionic conductivity and transference number of PVA polymer electrolytes were measured in order to know more about the conductivity order and charge transport in these materials. The charge transport in PVA polymer electrolyte was measured to be largely due to ions (tion = 0.97), as indicated by the transference number. Increasing the ZnS concentration and the temperature were both found to raise the ionic conductivity. The discharge properties of solid-state battery cells made with this PVA polymer electrolyte were studied while operating under a constant load of 100 kW.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Golodnitsky, E. Strauss, E. Peled and S. Greenbaum, J. Electrochem. Soc., 162, A2551 (2015); https://doi.org/10.1149/2.0161514jes
- J.C. Hoepfner, M.R. Loos and S.H. Pezzin, J. Appl. Polym. Sci., 135, 46157 (2018); https://doi.org/10.1002/app.46157
- K. Nakane, T. Kurita, T. Ogihara and N. Ogata, Compos., Part B Eng., 35, 219 (2004); https://doi.org/10.1016/S1359-8368(03)00066-0
- R.M. Omer, E.T.B. Al-Tikrity and N. Rasheed, Prog. Color Colorants Coat., 15, 191 (2022); https://doi.org/10.30509/PCCC.2021.166839.1120
- A. Rajeshwar Reddy, Ch. Srinivas and N. Narsimlu, Mater. Today Proc., 67, 912 (2022); https://doi.org/10.1016/j.matpr.2022.07.391
- L.-J. Chen, J.-D. Liao, S.-J. Lin, Y.-J. Chuang and Y.-S. Fu, Polymer, 50, 3516 (2009); https://doi.org/10.1016/j.polymer.2009.05.063
- Z.W. Abdullah, Y. Dong, I.J. Davies and S. Barbhuiya, Polym.-Plast. Technol. Eng., 56, 1307 (2017); https://doi.org/10.1080/03602559.2016.1275684
- K. Singh, Y. Yao, T. Ichikawa, A. Jain and R. Singh, Batteries, 8, 113 (2022); https://doi.org/10.3390/batteries8090113
- A. Arya and A.L. Sharma, Ionics, 23, 497 (2017); https://doi.org/10.1007/s11581-016-1908-6
- P. Kumar, N. Khan and D. Kumar, Green Chem. Technol. Lett., 2, 185 (2016); https://doi.org/10.18510/gctl.2016.244
- O. Olabisi and K. Adewale, Polyvinyl Butyral, In: Handbook of Thermoplastics, CRC Press (2015).
- F. Lian, Y. Wen, Y. Ren and H.Y. Guan, J. Membr. Sci., 456, 42 (2014); https://doi.org/10.1016/j.memsci.2014.01.010
- S.B. Aziz, T.J. Woo, M.F.Z. Kadir and H.M. Ahmed, J. Sci. Adv. Mater. Devices, 3, 1 (2018); https://doi.org/10.1016/j.jsamd.2018.01.002
- P.W. Davis and T.S. Shilliday, Phys. Rev., 118, 1020 (1960); https://doi.org/10.1103/PhysRev.118.1020
- N. Krishna Jyothi, K. Vijaya Kumar and P. Narayana Murthy, Int. J. ChemTech. Res., 6, 5214 (2014).
- S. Ramesh, A.H. Yahaya and A.K. Arof, Solid State Ion., 152-153, 291 (2002); https://doi.org/10.1016/S0167-2738(02)00311-9
- J.M. Hadi, S.B. Aziz, S. R. Saeed, M.A. Brza, R.T. Abdulwahid, M.H. Hamsan, R. M. Abdullah, M.F.Z. Kadir and S.K. Muzakir, Membranes, 10, 363 (2020); https://doi.org/10.3390/membranes10110363
- D. Ghosh, G. Ahamed, S. Batuta, N.A. Begum and D. Mandal, J. Phys. Chem. A, 120, 44 (2016); https://doi.org/10.1021/acs.jpca.5b09681
- J.B. Wagner and C.J. Wagner, J. Chem. Phys., 26, 1597 (1957); https://doi.org/10.1063/1.1743590
- J.C. Hoepfner, M.R. Loos and S.H. Pezzin, J. Appl. Polym. Sci., 135, 46157 (2018); https://doi.org/10.1002/app.46157
- S.K.S. Basha, G.S. Sundari, K.V. Kumar and M.C. Rao, Polym. Sci. Ser. A, 59, 554 (2017); https://doi.org/10.1134/S0965545X17040095
- B. Bhargav, V.M. Mohan, A.K. Sharma and V.V.R.N. Rao, Curr. Appl. Phys., 9, 165 (2009); https://doi.org/10.1016/j.cap.2008.01.006
References
D. Golodnitsky, E. Strauss, E. Peled and S. Greenbaum, J. Electrochem. Soc., 162, A2551 (2015); https://doi.org/10.1149/2.0161514jes
J.C. Hoepfner, M.R. Loos and S.H. Pezzin, J. Appl. Polym. Sci., 135, 46157 (2018); https://doi.org/10.1002/app.46157
K. Nakane, T. Kurita, T. Ogihara and N. Ogata, Compos., Part B Eng., 35, 219 (2004); https://doi.org/10.1016/S1359-8368(03)00066-0
R.M. Omer, E.T.B. Al-Tikrity and N. Rasheed, Prog. Color Colorants Coat., 15, 191 (2022); https://doi.org/10.30509/PCCC.2021.166839.1120
A. Rajeshwar Reddy, Ch. Srinivas and N. Narsimlu, Mater. Today Proc., 67, 912 (2022); https://doi.org/10.1016/j.matpr.2022.07.391
L.-J. Chen, J.-D. Liao, S.-J. Lin, Y.-J. Chuang and Y.-S. Fu, Polymer, 50, 3516 (2009); https://doi.org/10.1016/j.polymer.2009.05.063
Z.W. Abdullah, Y. Dong, I.J. Davies and S. Barbhuiya, Polym.-Plast. Technol. Eng., 56, 1307 (2017); https://doi.org/10.1080/03602559.2016.1275684
K. Singh, Y. Yao, T. Ichikawa, A. Jain and R. Singh, Batteries, 8, 113 (2022); https://doi.org/10.3390/batteries8090113
A. Arya and A.L. Sharma, Ionics, 23, 497 (2017); https://doi.org/10.1007/s11581-016-1908-6
P. Kumar, N. Khan and D. Kumar, Green Chem. Technol. Lett., 2, 185 (2016); https://doi.org/10.18510/gctl.2016.244
O. Olabisi and K. Adewale, Polyvinyl Butyral, In: Handbook of Thermoplastics, CRC Press (2015).
F. Lian, Y. Wen, Y. Ren and H.Y. Guan, J. Membr. Sci., 456, 42 (2014); https://doi.org/10.1016/j.memsci.2014.01.010
S.B. Aziz, T.J. Woo, M.F.Z. Kadir and H.M. Ahmed, J. Sci. Adv. Mater. Devices, 3, 1 (2018); https://doi.org/10.1016/j.jsamd.2018.01.002
P.W. Davis and T.S. Shilliday, Phys. Rev., 118, 1020 (1960); https://doi.org/10.1103/PhysRev.118.1020
N. Krishna Jyothi, K. Vijaya Kumar and P. Narayana Murthy, Int. J. ChemTech. Res., 6, 5214 (2014).
S. Ramesh, A.H. Yahaya and A.K. Arof, Solid State Ion., 152-153, 291 (2002); https://doi.org/10.1016/S0167-2738(02)00311-9
J.M. Hadi, S.B. Aziz, S. R. Saeed, M.A. Brza, R.T. Abdulwahid, M.H. Hamsan, R. M. Abdullah, M.F.Z. Kadir and S.K. Muzakir, Membranes, 10, 363 (2020); https://doi.org/10.3390/membranes10110363
D. Ghosh, G. Ahamed, S. Batuta, N.A. Begum and D. Mandal, J. Phys. Chem. A, 120, 44 (2016); https://doi.org/10.1021/acs.jpca.5b09681
J.B. Wagner and C.J. Wagner, J. Chem. Phys., 26, 1597 (1957); https://doi.org/10.1063/1.1743590
J.C. Hoepfner, M.R. Loos and S.H. Pezzin, J. Appl. Polym. Sci., 135, 46157 (2018); https://doi.org/10.1002/app.46157
S.K.S. Basha, G.S. Sundari, K.V. Kumar and M.C. Rao, Polym. Sci. Ser. A, 59, 554 (2017); https://doi.org/10.1134/S0965545X17040095
B. Bhargav, V.M. Mohan, A.K. Sharma and V.V.R.N. Rao, Curr. Appl. Phys., 9, 165 (2009); https://doi.org/10.1016/j.cap.2008.01.006