This work is licensed under a Creative Commons Attribution 4.0 International License.
Studying of 2,2′-Bipyrimidine Based Dyes Properties as Photo-Sensitizer for Dye Sensitized Solar Cells (DSSCs)
Corresponding Author(s) : V. Sathyanarayanamoorthi
Asian Journal of Chemistry,
Vol. 35 No. 6 (2023): Vol 35 Issue 6, 2023
Abstract
In this investigation, five novel π-new organic donor-π-acceptor dyes (D-π-A) based on 2,2′-bipyrimidines were used. For optimization and DFT research, respectively, the 6-311+G(d,p) basis set and B3LYP density functional theory were applied. In all the systems, diphenyl amine moiety acts as the electron-donor component, whereas the nitro/cyano moiety as electron acceptor (anchoring) group. In the conjugated spacer, a methyl/ethyl substituent was used to examine the impact of the auxiliary donor group. The computed HOMO-LUMO gap and the spectral data matched well. The oscillator strength (f), electron injection free energy (ΔGinject) and light-harvesting efficiency (LHE) were also computed and explained. The calculated values for the examined dye-sensitizers open-circuit photo voltage (Voc) and electron coupling constant (VRP) were also included in this research. This study demonstrates that every synthetic dye has promising potential as a dye sensitized solar cells (DSSCs) sensitizer.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Portillo-Cortez, A. Martínez, A. Dutt and G. Santana, J. Phys. Chem. A, 123, 10930 (2019); https://doi.org/10.1021/acs.jpca.9b09024
- L.W.A. Vallejo, S.C.A. Quiñones and S.J.A. Hernandez, eds.: L.A. Kosyachenko, The Chemistry and Physics of Dye-Sensitized Solar Cells. In Solar Cell Dye-Sensitized Devices, IntechOpen: Rijeka, Croatia, pp. 399-418 (2011).
- H. Kusama and K. Sayama, J. Phys. Chem. C, 116, 1493 (2012); https://doi.org/10.1021/jp208462a
- S. Rackauskas, N. Barbero, C. Barolo and G. Viscardi, Eds.: K. Maaz, ZnO Nanowires for Dye Sensitized Solar Cells; In Nanowires New-Insights, IntechOpen: Rijeka, Croatia, pp. 59-78 (2017); https://doi.org/10.5772/67616
- L.-N. Yang, S.-C. Li, Z.-S. Li and Q.-S. Li, RSC Adv., 5, 25079 (2015); https://doi.org/10.1039/C5RA00587F
- Q. Lin, X. Huang, S. Ramachandran, R. Boonsin, Y. Khendriche, X. Wang, R. Valleix, J.-P. Roblin, D. Boyer, G. Chadeyron and G. Zucchi, ACS Appl. Polym. Mater., 2, 5581 (2020); https://doi.org/10.1021/acsapm.0c00915
- K.Y. Chen, P.A. Schauer, B.O. Patrick and C.P. Berlinguette, Dalton Trans., 47, 11942 (2018); https://doi.org/10.1039/C8DT01921E
- E.V. Dose and L.J. Wilson, Inorg. Chem., 17, 2660 (1978); https://doi.org/10.1021/ic50187a056
- S. Ernst and W. Kaim, J. Am. Chem. Soc., 108, 3578 (1986); https://doi.org/10.1021/ja00273a005
- J. Zhang, Y. Liu and P. Yu, J. Chin. Chem. Soc., 66, 286 (2018); https://doi.org/10.1002/jccs.201800286
- H. Ozawa, H. Kawaguchi, Y. Okuyama and H. Arakawa, Eur. J. Inorg. Chem., 2013, 5187 (2013); https://doi.org/10.1002/ejic.201300345
- M.R.E. da Silva, T. Auvray and G.S. Hanan, Inorg. Chim. Acta, 499, 119194 (2019); https://doi.org/10.1016/j.ica.2019.119194
- R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa and M. Tachiya, J. Phys. Chem. B, 108, 4818 (2004); https://doi.org/10.1021/jp031260g
- J.B. Asbury, Y.-Q. Wang, E. Hao, H.N. Ghosh and T. Lian, Res. Chem. Intermed., 27, 393 (2001); https://doi.org/10.1163/156856701104202255
- A. Hagfeldt and M. Graetzel, Chem. Rev., 95, 49 (1995); https://doi.org/10.1021/cr00033a003
- Z.-G. Zhang, J. Min, S. Zhang, J. Zhang, M. Zhang and Y. Li, Chem. Commun., 47, 9474 (2011); https://doi.org/10.1039/c1cc13477a
- Z. Cai-Rong, L. Zi-Jiang, C. Yu-Hong, C. Hong-Shan, W. You-Zhi and Y. Li-Hua, J. Mol. Struct., 899, 86 (2009); https://doi.org/10.1016/j.theochem.2008.12.015
- J.M. Juma, S.A. Vuai and N.S. Babu, Int. J. Photoenergy, 2019, 4616198 (2019); https://doi.org/10.1155/2019/4616198
- W. Sang-aroon, S. Saekow and V. Amornkitbamrung, J. Photochem. Photobiol. Chem., 236, 35 (2012); https://doi.org/10.1016/j.jphotochem.2012.03.014
- A.D. Becke, J. Chem. Phys., 98, 1372 (1993); https://doi.org/10.1063/1.464304
- A.D. Becke, Phys. Rev. A Gen. Phys., 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- R.J. Magyar and S. Tretiak, J. Chem. Theor. Comput., 3, 976 (2007); https://doi.org/10.1021/ct600282k
- T. Yanai, D.P. Tew and N.C. Handy, Chem. Phys. Lett., 393, 51 (2004); https://doi.org/10.1016/j.cplett.2004.06.011
- Y. Xue, L. An, Y. Zheng, L. Zhang, X. Gong, Y. Qian and Y. Liu, Comput. Theor. Chem., 981, 90 (2012); https://doi.org/10.1016/j.comptc.2011.11.050
- A.W. Lange, M.A. Rohrdanz and J.M. Herbert, J. Phys. Chem. B, 112, 6304 (2008); https://doi.org/10.1021/jp802058k
- M.A. Rohrdanz and J.M. Herbert, J. Chem. Phys., 129, 034107 (2008); https://doi.org/10.1063/1.2954017
- J. Toulouse, F. Colonna and A. Savin, J. Chem. Phys., 122, 014110 (2005); https://doi.org/10.1063/1.1824896
- X. Li, P. Song, D. Zhao and Y. Li, Materials, 13, 4834 (2020); https://doi.org/10.3390/ma13214834
- Y. Ooyama, M. Kanda, K. Uenaka and J. Ohshita, ChemPhysChem, 16, 3049 (2015); https://doi.org/10.1002/cphc.201500419
- K. Moneer, L. Mohsen, R. Marwa and J.H. Fraih, J. Glob. Pharma Technol., 12, 206 (2017).
- K. Kakiage, H. Osada, Y. Aoyama, T. Yano, K. Oya, S. Iwamoto, J. Fujisawa and M. Hanaya, Sci. Rep., 6, 35888 (2016); https://doi.org/10.1038/srep35888
- L. Etgar, G. Schuchardt, D. Costenaro, F. Carniato, S.M. Zakeeruddin, C. Bisio, M.K. Nazeeruddin, L. Marchese and M. Graetzel, J. Mater. Chem. A Mater. Energy Sustain., 1, 10142 (2013); https://doi.org/10.1039/c3ta11436h
- Z. Liu, L. Krückemeier, B. Krogmeier, B. Klingebiel, J.A. Márquez, S. Levcenko, S. Öz, S. Mathur, U. Rau, T. Unold and T. Kirchartz, ACS Energy Lett., 4, 110 (2019); https://doi.org/10.1021/acsenergylett.8b01906
- R.G. Pearson, Inorg. Chem., 27, 734 (1988); https://doi.org/10.1021/ic00277a030
- H. Wang, Y. Li, P. Song, F. Ma and Q. Wang, Mol. Phys., 114, 3518 (2016); https://doi.org/10.1080/00268976.2016.1244357
- A. Irfan and S. Muhammad, Int. J. Electrochem. Sci., 10, 3600 (2015).
References
K. Portillo-Cortez, A. Martínez, A. Dutt and G. Santana, J. Phys. Chem. A, 123, 10930 (2019); https://doi.org/10.1021/acs.jpca.9b09024
L.W.A. Vallejo, S.C.A. Quiñones and S.J.A. Hernandez, eds.: L.A. Kosyachenko, The Chemistry and Physics of Dye-Sensitized Solar Cells. In Solar Cell Dye-Sensitized Devices, IntechOpen: Rijeka, Croatia, pp. 399-418 (2011).
H. Kusama and K. Sayama, J. Phys. Chem. C, 116, 1493 (2012); https://doi.org/10.1021/jp208462a
S. Rackauskas, N. Barbero, C. Barolo and G. Viscardi, Eds.: K. Maaz, ZnO Nanowires for Dye Sensitized Solar Cells; In Nanowires New-Insights, IntechOpen: Rijeka, Croatia, pp. 59-78 (2017); https://doi.org/10.5772/67616
L.-N. Yang, S.-C. Li, Z.-S. Li and Q.-S. Li, RSC Adv., 5, 25079 (2015); https://doi.org/10.1039/C5RA00587F
Q. Lin, X. Huang, S. Ramachandran, R. Boonsin, Y. Khendriche, X. Wang, R. Valleix, J.-P. Roblin, D. Boyer, G. Chadeyron and G. Zucchi, ACS Appl. Polym. Mater., 2, 5581 (2020); https://doi.org/10.1021/acsapm.0c00915
K.Y. Chen, P.A. Schauer, B.O. Patrick and C.P. Berlinguette, Dalton Trans., 47, 11942 (2018); https://doi.org/10.1039/C8DT01921E
E.V. Dose and L.J. Wilson, Inorg. Chem., 17, 2660 (1978); https://doi.org/10.1021/ic50187a056
S. Ernst and W. Kaim, J. Am. Chem. Soc., 108, 3578 (1986); https://doi.org/10.1021/ja00273a005
J. Zhang, Y. Liu and P. Yu, J. Chin. Chem. Soc., 66, 286 (2018); https://doi.org/10.1002/jccs.201800286
H. Ozawa, H. Kawaguchi, Y. Okuyama and H. Arakawa, Eur. J. Inorg. Chem., 2013, 5187 (2013); https://doi.org/10.1002/ejic.201300345
M.R.E. da Silva, T. Auvray and G.S. Hanan, Inorg. Chim. Acta, 499, 119194 (2019); https://doi.org/10.1016/j.ica.2019.119194
R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa and M. Tachiya, J. Phys. Chem. B, 108, 4818 (2004); https://doi.org/10.1021/jp031260g
J.B. Asbury, Y.-Q. Wang, E. Hao, H.N. Ghosh and T. Lian, Res. Chem. Intermed., 27, 393 (2001); https://doi.org/10.1163/156856701104202255
A. Hagfeldt and M. Graetzel, Chem. Rev., 95, 49 (1995); https://doi.org/10.1021/cr00033a003
Z.-G. Zhang, J. Min, S. Zhang, J. Zhang, M. Zhang and Y. Li, Chem. Commun., 47, 9474 (2011); https://doi.org/10.1039/c1cc13477a
Z. Cai-Rong, L. Zi-Jiang, C. Yu-Hong, C. Hong-Shan, W. You-Zhi and Y. Li-Hua, J. Mol. Struct., 899, 86 (2009); https://doi.org/10.1016/j.theochem.2008.12.015
J.M. Juma, S.A. Vuai and N.S. Babu, Int. J. Photoenergy, 2019, 4616198 (2019); https://doi.org/10.1155/2019/4616198
W. Sang-aroon, S. Saekow and V. Amornkitbamrung, J. Photochem. Photobiol. Chem., 236, 35 (2012); https://doi.org/10.1016/j.jphotochem.2012.03.014
A.D. Becke, J. Chem. Phys., 98, 1372 (1993); https://doi.org/10.1063/1.464304
A.D. Becke, Phys. Rev. A Gen. Phys., 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
R.J. Magyar and S. Tretiak, J. Chem. Theor. Comput., 3, 976 (2007); https://doi.org/10.1021/ct600282k
T. Yanai, D.P. Tew and N.C. Handy, Chem. Phys. Lett., 393, 51 (2004); https://doi.org/10.1016/j.cplett.2004.06.011
Y. Xue, L. An, Y. Zheng, L. Zhang, X. Gong, Y. Qian and Y. Liu, Comput. Theor. Chem., 981, 90 (2012); https://doi.org/10.1016/j.comptc.2011.11.050
A.W. Lange, M.A. Rohrdanz and J.M. Herbert, J. Phys. Chem. B, 112, 6304 (2008); https://doi.org/10.1021/jp802058k
M.A. Rohrdanz and J.M. Herbert, J. Chem. Phys., 129, 034107 (2008); https://doi.org/10.1063/1.2954017
J. Toulouse, F. Colonna and A. Savin, J. Chem. Phys., 122, 014110 (2005); https://doi.org/10.1063/1.1824896
X. Li, P. Song, D. Zhao and Y. Li, Materials, 13, 4834 (2020); https://doi.org/10.3390/ma13214834
Y. Ooyama, M. Kanda, K. Uenaka and J. Ohshita, ChemPhysChem, 16, 3049 (2015); https://doi.org/10.1002/cphc.201500419
K. Moneer, L. Mohsen, R. Marwa and J.H. Fraih, J. Glob. Pharma Technol., 12, 206 (2017).
K. Kakiage, H. Osada, Y. Aoyama, T. Yano, K. Oya, S. Iwamoto, J. Fujisawa and M. Hanaya, Sci. Rep., 6, 35888 (2016); https://doi.org/10.1038/srep35888
L. Etgar, G. Schuchardt, D. Costenaro, F. Carniato, S.M. Zakeeruddin, C. Bisio, M.K. Nazeeruddin, L. Marchese and M. Graetzel, J. Mater. Chem. A Mater. Energy Sustain., 1, 10142 (2013); https://doi.org/10.1039/c3ta11436h
Z. Liu, L. Krückemeier, B. Krogmeier, B. Klingebiel, J.A. Márquez, S. Levcenko, S. Öz, S. Mathur, U. Rau, T. Unold and T. Kirchartz, ACS Energy Lett., 4, 110 (2019); https://doi.org/10.1021/acsenergylett.8b01906
R.G. Pearson, Inorg. Chem., 27, 734 (1988); https://doi.org/10.1021/ic00277a030
H. Wang, Y. Li, P. Song, F. Ma and Q. Wang, Mol. Phys., 114, 3518 (2016); https://doi.org/10.1080/00268976.2016.1244357
A. Irfan and S. Muhammad, Int. J. Electrochem. Sci., 10, 3600 (2015).