This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Mediated Preparation of Transition Metal Doped Cobalt Oxide Nanoparticles for Wastewater Treatment
Corresponding Author(s) : A. Ajitha
Asian Journal of Chemistry,
Vol. 35 No. 6 (2023): Vol 35 Issue 6, 2023
Abstract
Recent studies have shown that the metal oxide nanoparticles can inhibit bacterial growth on their surfaces due to the creation of super oxide anion when metal ions interact with UV light. One such metal oxide with antibacterial activity against a variety of bacteria is cobalt oxide (Co3O4). The optical and anti-pathogen properties of cobalt oxide nanoparticles generated from egg albumin using a microwave-assisted hydrothermal process were studied and optimized by adding copper as a dopant at varying molar concentrations (1, 3 and 5 mol%). Bare and doped samples were analyzed using SEM, energy dispersive X-ray spectroscopy and X-ray diffraction. The resulting structure and small average crystalline size highlight the role of egg albumin in stabilizing and regulating size. A sample with 5 mol% copper doped material exhibited the highest resistance zone to Escherichia coli germs. Hence, by controlling the Cu content, both the photocatalytic and antibacterial properties can be enchanced.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Some, R. Mondal, D. Mitra, D. Jain, D. Verma and S. Das, Energy Nexus, 1, 100008 (2021); https://doi.org/10.1016/j.nexus.2021.100008
- M. Ismail, K. Akhtar, M.I. Khan, T. Kamal, M.A. Khan, A. M. Asiri, J. Seo and S.B. Khan, Curr. Pharm. Des., 25, 3645 (2019); https://doi.org/10.2174/1381612825666191021142026
- B. Bhardwaj, P. Singh, A. Kumar, S. Kumar and V. Budhwar, Adv. Pharm. Bull., 10, 566 (2020); https://doi.org/10.34172/apb.2020.067
- M.A.E. Aleem Ali El-Remaily, A.M. Abu-Dief and R.M. El-Khatib, Appl. Organomet. Chem., 30, 1022 (2016); https://doi.org/10.1002/aoc.3536
- S. Vasantharaj, S. Sathiyavimal, P. Senthilkumar, F. LewisOscar and A. Pugazhendhi, J. Photochem. Photobiol. B, 192, 74 (2019); https://doi.org/10.1016/j.jphotobiol.2018.12.025
- D. Letsholathebe, F.T. Thema, K. Mphale, H.E.A. Mohamed, K.J. Holonga, R. Ketlhwaafetse and S. Chimidza, Mater. Today: Proceed., 36, 499 (2020); https://doi.org/10.1016/j.matpr.2020.05.205
- K. Qi, X. Xing, A. Zada, M. Li, Q. Wang, S.-Y. Liu, H. Lin and G. Wang, Ceramics Int., 46, 1494 (2019); https://doi.org/10.1016/j.ceramint.2019.09.116
- S. Dhara and P. Bhargava, J. Am. Ceram. Soc., 86, 1645 (2003); https://doi.org/10.1111/j.1151-2916.2003.tb03534.x
- M.J. Limo, A. Sola-Rabada, E. Boix, V. Thota, Z.C. Westcott, V. Puddu and C.C. Perry, Chem. Rev., 118, 11118 (2018); https://doi.org/10.1021/acs.chemrev.7b00660
- S.S. Teske and C.S. Detweiler, Int. J. Environ. Res. Public Health, 12, 1112 (2015); https://doi.org/10.3390/ijerph120201112
- A.A. Rempel, E.A. Kozlova, T.I. Gorbunova, S.V. Cherepanova, E.Y. Gerasimov, N.S. Kozhevnikova, A.A. Valeeva, E.Y. Korovin, V.V. Kaichev and Y.A. Shchipunov, Catal. Commun., 68, 61 (2015); https://doi.org/10.1016/j.catcom.2015.04.034
- L. Ling, L. Liu, Y. Feng, J. Zhu and Z. Bian, Chin. J. Catal., 39, 639 (2018); https://doi.org/10.1016/S1872-2067(17)62980-2
- S. Faniband, C.C. Vidyasagar, V.M. Jiménez-Pérez, V.M. Jiménez-Pérez, Mounesh and A.H. Shridhar, React. Chem. Eng., 7, 1847 (2022); https://doi.org/10.1039/D2RE00117A
- M. Zahan and J. Podder, Biointerface Res. Appl. Chem., 12, 6321 (2022); https://doi.org/10.33263/BRIAC125.63216335
- Z. Sheikhi Mehrabadi, A. Ahmadpour, N. Shahtahmasebi and M.M. Bagheri Mohagheghi, Phys. Scr., 84, 015801 (2011); https://doi.org/10.1088/0031-8949/84/01/015801
- N. Senthilkumar, E. Vivek, M. Shankar, M. Meena, M. Vimalan and I.V. Potheher, J. Mater. Sci. Mater. Electron., 29, 2927 (2018); https://doi.org/10.1007/s10854-017-8223-5
- I.S. Okeke, K.K. Agwu, A.A. Ubachukwu, I.G. Madiba, M. Maaza, G.M. Whyte and F.I. Ezema, Vacuum, 187, 110110 (2021); https://doi.org/10.1016/j.vacuum.2021.110110
- C. Wang, H. Shi and Y. Li, Appl. Surf. Sci., 257, 6873 (2011); https://doi.org/10.1016/j.apsusc.2011.03.021
- M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee and M.H. Cho, J. Mater. Chem. A Mater. Energy Sustain., 2, 637 (2014); https://doi.org/10.1039/C3TA14052K
- A. Kumar and P.K. Ahluwalia, Eur. Phys. J. B, 85, 186 (2012); https://doi.org/10.1140/epjb/e2012-30070-x
- A.K. Singh, Curr. Res. Green Sustain. Chem., 5, 100270 (2022); https://doi.org/10.1016/j.crgsc.2022.100270
- M. Hafeez, R. Shaheen, B. Akram, Zain-ul-Abdin, S. Haq, S. Mahsud, S. Ali and R.T. Khan, Mater. Res. Express, 7, 025019 (2020); https://doi.org/10.1088/2053-1591/ab70dd
- R. Govindasamy, V. Raja, S. Singh, M. Govindarasu, S. Sabura, K. Rekha, V.D. Rajeswari, S.S. Alharthi, M. Vaiyapuri, R. Sudarmani, S. Jesurani, B. Venkidasamy and M. Thiruvengadam, Molecules, 27, 5646 (2022); https://doi.org/10.3390/molecules27175646
- K. Ravichandran, P. Sathish, S. Snega, K. Karthika, P.V. Rajkumar, K. Subha and B. Sakthivel, Powder Technol., 274, 250 (2015); https://doi.org/10.1016/j.powtec.2014.12.053
- T. Warang, N. Patel, R. Fernandes, N. Bazzanella and A. Miotello, Appl. Catal. B, 132-133, 204 (2013); https://doi.org/10.1016/j.apcatb.2012.11.040
- S. Alkaykh, A. Mbarek and E.E. Ali-Shattle, Heliyon, 6, e03663 (2020); https://doi.org/10.1016/j.heliyon.2020.e03663
References
S. Some, R. Mondal, D. Mitra, D. Jain, D. Verma and S. Das, Energy Nexus, 1, 100008 (2021); https://doi.org/10.1016/j.nexus.2021.100008
M. Ismail, K. Akhtar, M.I. Khan, T. Kamal, M.A. Khan, A. M. Asiri, J. Seo and S.B. Khan, Curr. Pharm. Des., 25, 3645 (2019); https://doi.org/10.2174/1381612825666191021142026
B. Bhardwaj, P. Singh, A. Kumar, S. Kumar and V. Budhwar, Adv. Pharm. Bull., 10, 566 (2020); https://doi.org/10.34172/apb.2020.067
M.A.E. Aleem Ali El-Remaily, A.M. Abu-Dief and R.M. El-Khatib, Appl. Organomet. Chem., 30, 1022 (2016); https://doi.org/10.1002/aoc.3536
S. Vasantharaj, S. Sathiyavimal, P. Senthilkumar, F. LewisOscar and A. Pugazhendhi, J. Photochem. Photobiol. B, 192, 74 (2019); https://doi.org/10.1016/j.jphotobiol.2018.12.025
D. Letsholathebe, F.T. Thema, K. Mphale, H.E.A. Mohamed, K.J. Holonga, R. Ketlhwaafetse and S. Chimidza, Mater. Today: Proceed., 36, 499 (2020); https://doi.org/10.1016/j.matpr.2020.05.205
K. Qi, X. Xing, A. Zada, M. Li, Q. Wang, S.-Y. Liu, H. Lin and G. Wang, Ceramics Int., 46, 1494 (2019); https://doi.org/10.1016/j.ceramint.2019.09.116
S. Dhara and P. Bhargava, J. Am. Ceram. Soc., 86, 1645 (2003); https://doi.org/10.1111/j.1151-2916.2003.tb03534.x
M.J. Limo, A. Sola-Rabada, E. Boix, V. Thota, Z.C. Westcott, V. Puddu and C.C. Perry, Chem. Rev., 118, 11118 (2018); https://doi.org/10.1021/acs.chemrev.7b00660
S.S. Teske and C.S. Detweiler, Int. J. Environ. Res. Public Health, 12, 1112 (2015); https://doi.org/10.3390/ijerph120201112
A.A. Rempel, E.A. Kozlova, T.I. Gorbunova, S.V. Cherepanova, E.Y. Gerasimov, N.S. Kozhevnikova, A.A. Valeeva, E.Y. Korovin, V.V. Kaichev and Y.A. Shchipunov, Catal. Commun., 68, 61 (2015); https://doi.org/10.1016/j.catcom.2015.04.034
L. Ling, L. Liu, Y. Feng, J. Zhu and Z. Bian, Chin. J. Catal., 39, 639 (2018); https://doi.org/10.1016/S1872-2067(17)62980-2
S. Faniband, C.C. Vidyasagar, V.M. Jiménez-Pérez, V.M. Jiménez-Pérez, Mounesh and A.H. Shridhar, React. Chem. Eng., 7, 1847 (2022); https://doi.org/10.1039/D2RE00117A
M. Zahan and J. Podder, Biointerface Res. Appl. Chem., 12, 6321 (2022); https://doi.org/10.33263/BRIAC125.63216335
Z. Sheikhi Mehrabadi, A. Ahmadpour, N. Shahtahmasebi and M.M. Bagheri Mohagheghi, Phys. Scr., 84, 015801 (2011); https://doi.org/10.1088/0031-8949/84/01/015801
N. Senthilkumar, E. Vivek, M. Shankar, M. Meena, M. Vimalan and I.V. Potheher, J. Mater. Sci. Mater. Electron., 29, 2927 (2018); https://doi.org/10.1007/s10854-017-8223-5
I.S. Okeke, K.K. Agwu, A.A. Ubachukwu, I.G. Madiba, M. Maaza, G.M. Whyte and F.I. Ezema, Vacuum, 187, 110110 (2021); https://doi.org/10.1016/j.vacuum.2021.110110
C. Wang, H. Shi and Y. Li, Appl. Surf. Sci., 257, 6873 (2011); https://doi.org/10.1016/j.apsusc.2011.03.021
M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee and M.H. Cho, J. Mater. Chem. A Mater. Energy Sustain., 2, 637 (2014); https://doi.org/10.1039/C3TA14052K
A. Kumar and P.K. Ahluwalia, Eur. Phys. J. B, 85, 186 (2012); https://doi.org/10.1140/epjb/e2012-30070-x
A.K. Singh, Curr. Res. Green Sustain. Chem., 5, 100270 (2022); https://doi.org/10.1016/j.crgsc.2022.100270
M. Hafeez, R. Shaheen, B. Akram, Zain-ul-Abdin, S. Haq, S. Mahsud, S. Ali and R.T. Khan, Mater. Res. Express, 7, 025019 (2020); https://doi.org/10.1088/2053-1591/ab70dd
R. Govindasamy, V. Raja, S. Singh, M. Govindarasu, S. Sabura, K. Rekha, V.D. Rajeswari, S.S. Alharthi, M. Vaiyapuri, R. Sudarmani, S. Jesurani, B. Venkidasamy and M. Thiruvengadam, Molecules, 27, 5646 (2022); https://doi.org/10.3390/molecules27175646
K. Ravichandran, P. Sathish, S. Snega, K. Karthika, P.V. Rajkumar, K. Subha and B. Sakthivel, Powder Technol., 274, 250 (2015); https://doi.org/10.1016/j.powtec.2014.12.053
T. Warang, N. Patel, R. Fernandes, N. Bazzanella and A. Miotello, Appl. Catal. B, 132-133, 204 (2013); https://doi.org/10.1016/j.apcatb.2012.11.040
S. Alkaykh, A. Mbarek and E.E. Ali-Shattle, Heliyon, 6, e03663 (2020); https://doi.org/10.1016/j.heliyon.2020.e03663