This work is licensed under a Creative Commons Attribution 4.0 International License.
Removal of Colours in Textile Wastewater by Electrochemical Methods: A Review
Corresponding Author(s) : R. Rathinam
Asian Journal of Chemistry,
Vol. 35 No. 6 (2023): Vol 35 Issue 6, 2023
Abstract
Dye wastewater from industries poses significant health hazards to the environment, so it is important to limit its discharge into receiving waters. This overview discusses several feasible, low-cost treatment methods, which includes biological, chemical and physical approaches. Adsorption and membrane filtration are the two common and widely acceptable physical methods, whereas chemical (or widely known as oxidative methods include Fenton treatment, ozone treatment, H2O2 UV irradiation, hydrogen peroxide, NaOCl, ion-exchange, electrocoagulation, reverse process, nanofiltration, etc.). Biodegradation can occur either aerobically or anaerobically, and both of these are examples of the biological techniques. When it comes to the treatment of wastewater effluents from the textile industry, there are primarily two areas of concern: selecting the appropriate technology and developing an appropriate treatment strategy. However, The treatment of dye solutions typically depends heavily on electrochemical processes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Saxena and S. Rai, Research Biotica, 2, 26 (2020); https://doi.org/10.54083/ResBio.2.2.2020.26-29
- X. Wang, J. Jiang and W. Gao, Water Sci. Technol., 85, 2076 (2022); https://doi.org/10.2166/wst.2022.088
- R. Rathinam and S. Pattabhi, Indian J. Ecol., 46, 167 (2019).
- D. Chandran, Int. J. Sci. Eng. Res., 7, 392 (2016).
- R. Rathinam, M. Govindaraj, K. Vijayakumar and S. Pattabhi, Desalination Water Treat., 57, 1 (2015); https://doi.org/10.1080/19443994.2015.1086960
- Á. Moratalla, S. Cotillas, E. Lacasa, P. Cañizares, M.A. Rodrigo and C. Sáez, Molecules, 26, 6813 (2021); https://doi.org/10.3390/molecules26226813
- M.Y.A. Mollah, R. Schennach, J.R. Parga and D.L. Cocke, J. Hazard. Mater., 84, 29 (2001); https://doi.org/10.1016/S0304-3894(01)00176-5
- S. Raghu and C.A. Basha, J. Hazard. Mater., 149, 324 (2007); https://doi.org/10.1016/j.jhazmat.2007.03.087
- K. Jayanthi, R. Rathinam and S. Pattabhi, Res. J. Life Sci. Bioinform. Pharm. Chem. Sci., 4, 101 (2018).
- E. Butler, Y.-T. Hung, R.Y.-L. Yeh and M.S. Al-Ahmad, Water, 3, 495 (2011); https://doi.org/10.3390/w3020495
- D. Valero, J.M. Ortiz, V. García, E. Expósito, V. Montiel and A. Aldaz, Chemosphere, 84, 1290 (2011); https://doi.org/10.1016/j.chemosphere.2011.05.032
- E. Lacasa, P. Cañizares, C. Sáez, F.J. Fernández and M.A. Rodrigo, Sep. Purif. Technol., 79, 15 (2011); https://doi.org/10.1016/j.seppur.2011.03.005
- I. Kabdasli, I. Arslan-Alaton, T. Ölmez-Hanci and O. Tünay, Environ. Technol. Rev., 1, 2 (2012); https://doi.org/10.1080/21622515.2012.715390
- M.S. Mahmoud, J.Y. Farah and T.E. Farrag, Egypt. J. Petroleum, 22, 211 (2013); https://doi.org/10.1016/j.ejpe.2012.09.013
- U. Chigozie and N. Joseph, J. Adv. Chem. Eng., 4, 112 (2014); https://doi.org/10.4172/2090-4568.10001112
- R. Rathinam, M. Govindaraj, K. Vijayakumar and M. Kumarasamy, J. Sci. Res. Appl., 1, 80 (2015).
- M. Kobya, E. Gengec and E. Demirbas, Chem. Eng. Process., 101, 87 (2016); https://doi.org/10.1016/j.cep.2015.11.012
- M. Getaye, S. Hagos, Y. Alemu, Z. Tamene and O.P. Yadav, J. Anal. Pharm. Res., 6, 119 (2017); https://doi.org/10.15406/japlr.2017.06.00184
- A. Arora, R. Kaur, A. Kaur, N. Singh and S. Sharma, Pollut. Res., 37, 394 (2018).
- S. Sen, A.K. Prajapati, A. Bannatwala and D. Pal, Desalination Water Treat., 161, 21 (2019); https://doi.org/10.5004/dwt.2019.24302
- A. Tahreen, M.S. Jami and F. Ali, J. Water Process Eng., 37, 101440 (2020); https://doi.org/10.1016/j.jwpe.2020.101440
- A. Al-yaqoobi, M. Naeemah and K. Algharrawi, Environ. Eng. Manag. J., 20, 949 (2021).
- M. Ebba, P. Asaithambi and E. Alemayehu, Heliyon, 8, e09383 (2022); https://doi.org/10.1016/j.heliyon.2022.e09383
- M. Govindaraj, R. Rathinam, C. Sukumar, M. Uthayasankar and S. Pattabhi, Environ. Technol., 34, 503 (2013); https://doi.org/10.1080/09593330.2012.701333
- B.K. Körbahti, J. Hazard. Mater., 145, 277 (2007); https://doi.org/10.1016/j.jhazmat.2006.11.031
- H.S. Awad and N.A. Galwa, Chemosphere, 61, 1327 (2005); https://doi.org/10.1016/j.chemosphere.2005.03.054
- J. Chen, M. Liu, J. Zhang, Y. Xian and L. Jin, Chemosphere, 53, 1131 (2003); https://doi.org/10.1016/S0045-6535(03)00581-2
- D. Dogan and H. Türkdemir, J. Chem. Technol. Biotechnol., 80, 916 (2005); https://doi.org/10.1002/jctb.1262
- J. Spoorthi, Int. J. Res. Eng. Sci. Manag., 1, 268 (2018).
- N. Mohan and N. Balasubramanian, J. Hazard. Mater., 136, 239 (2006); https://doi.org/10.1016/j.jhazmat.2005.11.074
- F.H. Oliveira, M.E. Osugi, F.M.M. Paschoal, D. Profeti, P. Olivi and M.V.B. Zanoni, J. Appl. Electrochem., 37, 583 (2007); https://doi.org/10.1007/s10800-006-9289-6
- E. Butrón, M.E. Juárez, M. Solis, M. Teutli, I. González and J.L. Nava, Electrochim. Acta, 52, 6888 (2007); https://doi.org/10.1016/j.electacta.2007.04.108
- C. Saez, M. Panizza, M.A. Rodrigo and G. Cerisola, J. Chem. Technol. Biotechnol., 82, 575 (2007); https://doi.org/10.1002/jctb.1703
- P. Cañizares, A. Gadri, J. Lobato, B. Nasr, R. Paz, M.A. Rodrigo and C. Saez, Ind. Eng. Chem. Res., 45, 3468 (2006); https://doi.org/10.1021/ie051427n
- G. Cerisola and M. Panizza, Appl. Catal. B: Environ., 75, 95 (2007); https://doi.org/10.1016/j.apcatb.2007.04.001
- X. Chen, F. Gao and G. Chen, J. Appl. Electrochem., 35, 185 (2005); https://doi.org/10.1007/s10800-004-6068-0
- P. Drogui, J.-F. Blais and G. Mercier, Recent Pat. Eng., 1, 257 (2007); https://doi.org/10.2174/187221207782411629
- W. Li, Q. Zhou and T. Hua, Int. J. Chem. Eng., 2010, 270532 (2010); https://doi.org/10.1155/2010/270532
- O. Scialdone, S. Randazzo, A. Galia and G. Silvestri, Water Res., 43, 2260 (2009); https://doi.org/10.1016/j.watres.2009.02.014
- A. Anglada, A. Urtiaga and I. Ortiz, J. Chem. Technol. Biotechnol., 84, 1747 (2009); https://doi.org/10.1002/jctb.2214
- P. Mondal, A. Nandan, S. Ajithkumar, N.A. Siddiqui, S. Raja, A.K. Kola and D. Balakrishnan, Environ. Res., 116071 (2023); https://doi.org/10.1016/j.envres.2023.116071
- S. Patra, E. Roy, R. Madhuri and P.K. Sharma, J. Ind. Eng. Chem., 33, 226 (2016); https://doi.org/10.1016/j.jiec.2015.10.008
- Y.Y. Zhang, Z.X. Zhou, Y.F. Shen, Q. Zhou, J.H. Wang, A.R. Liu, S.Q. Liu and Y.J. Zhang, ACS Nano, 10, 9036 (2016); https://doi.org/10.1021/acsnano.6b05488
- A. Fujishima and K. Honda, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0
- M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari and D.D. Dionysiou, Appl. Catal. B, 125, 331 (2012); https://doi.org/10.1016/j.apcatb.2012.05.036
- H. Yang, B. Yang, W. Chen and J. Yang, Catalysts, 12, 1263 (2022); https://doi.org/10.3390/catal12101263
- C. Nasr, K. Vinodgopal, L. Fisher, S. Hotchandani, A.K. Chattopadhyay and P.V. Kamat, J. Phys. Chem., 100, 8436 (1996); https://doi.org/10.1021/jp953556v
- T. Aarthi and G. Madras, Ind. Eng. Chem. Res., 46, 7 (2007); https://doi.org/10.1021/ie060948n
- M.-P. Liu, T. Su, L. Sun and H.-B. Du, RSC Adv., 6, 4063 (2016); https://doi.org/10.1039/C5RA24643A
- R. Vinu, S.U. Akki and G. Madras, J. Hazard. Mater., 176, 765 (2010); https://doi.org/10.1016/j.jhazmat.2009.11.101
- Q. Guo, C. Zhou, Z. Ma, Z. Ren, H. Fan and X. Yang, Chem. Soc. Rev., 45, 3701 (2016); https://doi.org/10.1039/C5CS00448A
- P. Salvador and C. Gutierrez, J. Phys. Chem., 88, 3696 (1984); https://doi.org/10.1021/j150660a064
- K. Nagaveni, G. Sivalingam, M.S. Hegde and G. Madras, Appl. Catal. B, 48, 83 (2004); https://doi.org/10.1016/j.apcatb.2003.09.013
- V. Etacheri, C.D. Valentin, J. Schneider, D. Bahnemann and S.C. Pillai, J. Photochem. Photobiol. C: Photochem. Rev., 25, 1 (2015); https://doi.org/10.1016/j.jphotochemrev.2015.08.003
- X. Yu, S. Liu and J. Yu, Appl. Catal. B, 104, 12 (2011); https://doi.org/10.1016/j.apcatb.2011.03.008
- H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri and J. Ye, Adv. Mater., 24, 229 (2012); https://doi.org/10.1002/adma.201102752
- J.P. Chaudhary, A. Mahto, N. Vadodariya, F. Kholiya, S. Maiti, S.K. Nataraj and R. Meena, RSC Adv., 6, 61716 (2016); https://doi.org/10.1039/C6RA10317K
- K.A. Borges, L.M. Santos, R.M. Paniago, N.M. Barbosa Neto, J. Schneider, D.W. Bahnemann, A.O.T. Patrocinio and A.E.H. Machado, New J. Chem., 40, 7846 (2016); https://doi.org/10.1039/C6NJ00704J
- S. Sakthivel, M. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann and V. Murugesan, Water Res., 38, 3001 (2004); https://doi.org/10.1016/j.watres.2004.04.046
- W. Shen, Z. Li, H. Wang, Y. Liu, Q. Guo and Y. Zhang, J. Hazard. Mater., 152, 172 (2008); https://doi.org/10.1016/j.jhazmat.2007.06.082
- N. Senthilkumar, E. Nandhakumar, P. Priya, D. Soni, M. Vimalan and I. Vetha Potheher, New J. Chem., 41, 10347 (2017); https://doi.org/10.1039/C7NJ02664A
- S. Majumder, S. Chatterjee, P. Basnet and J. Mukherjee, Environ. Nanotechnol. Monit. Manag., 14, 100386 (2020); https://doi.org/10.1016/j.enmm.2020.100386
- M. Govindaraj, S. Babu, R. Rathinam, V. Vasini and K. Vijayakumar, Chem. Pap., 77, 169 (2022); https://doi.org/10.1007/s11696-022-02473-w
- Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi and H. Xu, Nat. Mater., 2, 821 (2003); https://doi.org/10.1038/nmat1014
- L. Jing, W. Zhou, G. Tian and H. Fu, Chem. Soc. Rev., 42, 9509 (2013); https://doi.org/10.1039/c3cs60176e
- A. Hameed, T. Montini, V. Gombac and P. Fornasiero, Photochem. Photobiol. Sci., 8, 677 (2009); https://doi.org/10.1039/b817396f
- M.J. Allen, V.C. Tung and R.B. Kaner, Chem. Rev., 110, 132 (2010); https://doi.org/10.1021/cr900070d
- B. Li and H. Cao, J. Mater. Chem., 21, 3346 (2011); https://doi.org/10.1039/C0JM03253K
- Z. Xiong, L.L. Zhang, J. Ma and X.S. Zhao, Chem. Commun., 46, 6099 (2010); https://doi.org/10.1039/c0cc01259a
- R. Darvishi Cheshmeh Soltani, A. Khataee and M. Mashayekhi, Desalination Water Treat., 57, 13494 (2016); https://doi.org/10.1080/19443994.2015.1058193
- H. Chakhtouna H. Benzeid, N. Zari, A. el kacem Qaiss and R. Bouhfid, Environ. Sci. Pollut. Res., 28, 44638 (2021); https://doi.org/10.1007/s11356-021-14996-y
- C. Yu, G. Li, S. Kumar, K. Yang and R. Jin, Adv. Mater., 26, 892 (2014); https://doi.org/10.1002/adma.201304173
- J.C. Tristão, F. Magalhães, P. Corio and M.T.C. Sansiviero, J. Photochem. Photobiol. A: Chem., 181, 152 (2006); https://doi.org/10.1016/j.jphotochem.2005.11.018
- Y. Bi and J. Ye, Chem. Commun., 46, 1532 (2010); https://doi.org/10.1039/b920497k
References
S. Saxena and S. Rai, Research Biotica, 2, 26 (2020); https://doi.org/10.54083/ResBio.2.2.2020.26-29
X. Wang, J. Jiang and W. Gao, Water Sci. Technol., 85, 2076 (2022); https://doi.org/10.2166/wst.2022.088
R. Rathinam and S. Pattabhi, Indian J. Ecol., 46, 167 (2019).
D. Chandran, Int. J. Sci. Eng. Res., 7, 392 (2016).
R. Rathinam, M. Govindaraj, K. Vijayakumar and S. Pattabhi, Desalination Water Treat., 57, 1 (2015); https://doi.org/10.1080/19443994.2015.1086960
Á. Moratalla, S. Cotillas, E. Lacasa, P. Cañizares, M.A. Rodrigo and C. Sáez, Molecules, 26, 6813 (2021); https://doi.org/10.3390/molecules26226813
M.Y.A. Mollah, R. Schennach, J.R. Parga and D.L. Cocke, J. Hazard. Mater., 84, 29 (2001); https://doi.org/10.1016/S0304-3894(01)00176-5
S. Raghu and C.A. Basha, J. Hazard. Mater., 149, 324 (2007); https://doi.org/10.1016/j.jhazmat.2007.03.087
K. Jayanthi, R. Rathinam and S. Pattabhi, Res. J. Life Sci. Bioinform. Pharm. Chem. Sci., 4, 101 (2018).
E. Butler, Y.-T. Hung, R.Y.-L. Yeh and M.S. Al-Ahmad, Water, 3, 495 (2011); https://doi.org/10.3390/w3020495
D. Valero, J.M. Ortiz, V. García, E. Expósito, V. Montiel and A. Aldaz, Chemosphere, 84, 1290 (2011); https://doi.org/10.1016/j.chemosphere.2011.05.032
E. Lacasa, P. Cañizares, C. Sáez, F.J. Fernández and M.A. Rodrigo, Sep. Purif. Technol., 79, 15 (2011); https://doi.org/10.1016/j.seppur.2011.03.005
I. Kabdasli, I. Arslan-Alaton, T. Ölmez-Hanci and O. Tünay, Environ. Technol. Rev., 1, 2 (2012); https://doi.org/10.1080/21622515.2012.715390
M.S. Mahmoud, J.Y. Farah and T.E. Farrag, Egypt. J. Petroleum, 22, 211 (2013); https://doi.org/10.1016/j.ejpe.2012.09.013
U. Chigozie and N. Joseph, J. Adv. Chem. Eng., 4, 112 (2014); https://doi.org/10.4172/2090-4568.10001112
R. Rathinam, M. Govindaraj, K. Vijayakumar and M. Kumarasamy, J. Sci. Res. Appl., 1, 80 (2015).
M. Kobya, E. Gengec and E. Demirbas, Chem. Eng. Process., 101, 87 (2016); https://doi.org/10.1016/j.cep.2015.11.012
M. Getaye, S. Hagos, Y. Alemu, Z. Tamene and O.P. Yadav, J. Anal. Pharm. Res., 6, 119 (2017); https://doi.org/10.15406/japlr.2017.06.00184
A. Arora, R. Kaur, A. Kaur, N. Singh and S. Sharma, Pollut. Res., 37, 394 (2018).
S. Sen, A.K. Prajapati, A. Bannatwala and D. Pal, Desalination Water Treat., 161, 21 (2019); https://doi.org/10.5004/dwt.2019.24302
A. Tahreen, M.S. Jami and F. Ali, J. Water Process Eng., 37, 101440 (2020); https://doi.org/10.1016/j.jwpe.2020.101440
A. Al-yaqoobi, M. Naeemah and K. Algharrawi, Environ. Eng. Manag. J., 20, 949 (2021).
M. Ebba, P. Asaithambi and E. Alemayehu, Heliyon, 8, e09383 (2022); https://doi.org/10.1016/j.heliyon.2022.e09383
M. Govindaraj, R. Rathinam, C. Sukumar, M. Uthayasankar and S. Pattabhi, Environ. Technol., 34, 503 (2013); https://doi.org/10.1080/09593330.2012.701333
B.K. Körbahti, J. Hazard. Mater., 145, 277 (2007); https://doi.org/10.1016/j.jhazmat.2006.11.031
H.S. Awad and N.A. Galwa, Chemosphere, 61, 1327 (2005); https://doi.org/10.1016/j.chemosphere.2005.03.054
J. Chen, M. Liu, J. Zhang, Y. Xian and L. Jin, Chemosphere, 53, 1131 (2003); https://doi.org/10.1016/S0045-6535(03)00581-2
D. Dogan and H. Türkdemir, J. Chem. Technol. Biotechnol., 80, 916 (2005); https://doi.org/10.1002/jctb.1262
J. Spoorthi, Int. J. Res. Eng. Sci. Manag., 1, 268 (2018).
N. Mohan and N. Balasubramanian, J. Hazard. Mater., 136, 239 (2006); https://doi.org/10.1016/j.jhazmat.2005.11.074
F.H. Oliveira, M.E. Osugi, F.M.M. Paschoal, D. Profeti, P. Olivi and M.V.B. Zanoni, J. Appl. Electrochem., 37, 583 (2007); https://doi.org/10.1007/s10800-006-9289-6
E. Butrón, M.E. Juárez, M. Solis, M. Teutli, I. González and J.L. Nava, Electrochim. Acta, 52, 6888 (2007); https://doi.org/10.1016/j.electacta.2007.04.108
C. Saez, M. Panizza, M.A. Rodrigo and G. Cerisola, J. Chem. Technol. Biotechnol., 82, 575 (2007); https://doi.org/10.1002/jctb.1703
P. Cañizares, A. Gadri, J. Lobato, B. Nasr, R. Paz, M.A. Rodrigo and C. Saez, Ind. Eng. Chem. Res., 45, 3468 (2006); https://doi.org/10.1021/ie051427n
G. Cerisola and M. Panizza, Appl. Catal. B: Environ., 75, 95 (2007); https://doi.org/10.1016/j.apcatb.2007.04.001
X. Chen, F. Gao and G. Chen, J. Appl. Electrochem., 35, 185 (2005); https://doi.org/10.1007/s10800-004-6068-0
P. Drogui, J.-F. Blais and G. Mercier, Recent Pat. Eng., 1, 257 (2007); https://doi.org/10.2174/187221207782411629
W. Li, Q. Zhou and T. Hua, Int. J. Chem. Eng., 2010, 270532 (2010); https://doi.org/10.1155/2010/270532
O. Scialdone, S. Randazzo, A. Galia and G. Silvestri, Water Res., 43, 2260 (2009); https://doi.org/10.1016/j.watres.2009.02.014
A. Anglada, A. Urtiaga and I. Ortiz, J. Chem. Technol. Biotechnol., 84, 1747 (2009); https://doi.org/10.1002/jctb.2214
P. Mondal, A. Nandan, S. Ajithkumar, N.A. Siddiqui, S. Raja, A.K. Kola and D. Balakrishnan, Environ. Res., 116071 (2023); https://doi.org/10.1016/j.envres.2023.116071
S. Patra, E. Roy, R. Madhuri and P.K. Sharma, J. Ind. Eng. Chem., 33, 226 (2016); https://doi.org/10.1016/j.jiec.2015.10.008
Y.Y. Zhang, Z.X. Zhou, Y.F. Shen, Q. Zhou, J.H. Wang, A.R. Liu, S.Q. Liu and Y.J. Zhang, ACS Nano, 10, 9036 (2016); https://doi.org/10.1021/acsnano.6b05488
A. Fujishima and K. Honda, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0
M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari and D.D. Dionysiou, Appl. Catal. B, 125, 331 (2012); https://doi.org/10.1016/j.apcatb.2012.05.036
H. Yang, B. Yang, W. Chen and J. Yang, Catalysts, 12, 1263 (2022); https://doi.org/10.3390/catal12101263
C. Nasr, K. Vinodgopal, L. Fisher, S. Hotchandani, A.K. Chattopadhyay and P.V. Kamat, J. Phys. Chem., 100, 8436 (1996); https://doi.org/10.1021/jp953556v
T. Aarthi and G. Madras, Ind. Eng. Chem. Res., 46, 7 (2007); https://doi.org/10.1021/ie060948n
M.-P. Liu, T. Su, L. Sun and H.-B. Du, RSC Adv., 6, 4063 (2016); https://doi.org/10.1039/C5RA24643A
R. Vinu, S.U. Akki and G. Madras, J. Hazard. Mater., 176, 765 (2010); https://doi.org/10.1016/j.jhazmat.2009.11.101
Q. Guo, C. Zhou, Z. Ma, Z. Ren, H. Fan and X. Yang, Chem. Soc. Rev., 45, 3701 (2016); https://doi.org/10.1039/C5CS00448A
P. Salvador and C. Gutierrez, J. Phys. Chem., 88, 3696 (1984); https://doi.org/10.1021/j150660a064
K. Nagaveni, G. Sivalingam, M.S. Hegde and G. Madras, Appl. Catal. B, 48, 83 (2004); https://doi.org/10.1016/j.apcatb.2003.09.013
V. Etacheri, C.D. Valentin, J. Schneider, D. Bahnemann and S.C. Pillai, J. Photochem. Photobiol. C: Photochem. Rev., 25, 1 (2015); https://doi.org/10.1016/j.jphotochemrev.2015.08.003
X. Yu, S. Liu and J. Yu, Appl. Catal. B, 104, 12 (2011); https://doi.org/10.1016/j.apcatb.2011.03.008
H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri and J. Ye, Adv. Mater., 24, 229 (2012); https://doi.org/10.1002/adma.201102752
J.P. Chaudhary, A. Mahto, N. Vadodariya, F. Kholiya, S. Maiti, S.K. Nataraj and R. Meena, RSC Adv., 6, 61716 (2016); https://doi.org/10.1039/C6RA10317K
K.A. Borges, L.M. Santos, R.M. Paniago, N.M. Barbosa Neto, J. Schneider, D.W. Bahnemann, A.O.T. Patrocinio and A.E.H. Machado, New J. Chem., 40, 7846 (2016); https://doi.org/10.1039/C6NJ00704J
S. Sakthivel, M. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann and V. Murugesan, Water Res., 38, 3001 (2004); https://doi.org/10.1016/j.watres.2004.04.046
W. Shen, Z. Li, H. Wang, Y. Liu, Q. Guo and Y. Zhang, J. Hazard. Mater., 152, 172 (2008); https://doi.org/10.1016/j.jhazmat.2007.06.082
N. Senthilkumar, E. Nandhakumar, P. Priya, D. Soni, M. Vimalan and I. Vetha Potheher, New J. Chem., 41, 10347 (2017); https://doi.org/10.1039/C7NJ02664A
S. Majumder, S. Chatterjee, P. Basnet and J. Mukherjee, Environ. Nanotechnol. Monit. Manag., 14, 100386 (2020); https://doi.org/10.1016/j.enmm.2020.100386
M. Govindaraj, S. Babu, R. Rathinam, V. Vasini and K. Vijayakumar, Chem. Pap., 77, 169 (2022); https://doi.org/10.1007/s11696-022-02473-w
Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi and H. Xu, Nat. Mater., 2, 821 (2003); https://doi.org/10.1038/nmat1014
L. Jing, W. Zhou, G. Tian and H. Fu, Chem. Soc. Rev., 42, 9509 (2013); https://doi.org/10.1039/c3cs60176e
A. Hameed, T. Montini, V. Gombac and P. Fornasiero, Photochem. Photobiol. Sci., 8, 677 (2009); https://doi.org/10.1039/b817396f
M.J. Allen, V.C. Tung and R.B. Kaner, Chem. Rev., 110, 132 (2010); https://doi.org/10.1021/cr900070d
B. Li and H. Cao, J. Mater. Chem., 21, 3346 (2011); https://doi.org/10.1039/C0JM03253K
Z. Xiong, L.L. Zhang, J. Ma and X.S. Zhao, Chem. Commun., 46, 6099 (2010); https://doi.org/10.1039/c0cc01259a
R. Darvishi Cheshmeh Soltani, A. Khataee and M. Mashayekhi, Desalination Water Treat., 57, 13494 (2016); https://doi.org/10.1080/19443994.2015.1058193
H. Chakhtouna H. Benzeid, N. Zari, A. el kacem Qaiss and R. Bouhfid, Environ. Sci. Pollut. Res., 28, 44638 (2021); https://doi.org/10.1007/s11356-021-14996-y
C. Yu, G. Li, S. Kumar, K. Yang and R. Jin, Adv. Mater., 26, 892 (2014); https://doi.org/10.1002/adma.201304173
J.C. Tristão, F. Magalhães, P. Corio and M.T.C. Sansiviero, J. Photochem. Photobiol. A: Chem., 181, 152 (2006); https://doi.org/10.1016/j.jphotochem.2005.11.018
Y. Bi and J. Ye, Chem. Commun., 46, 1532 (2010); https://doi.org/10.1039/b920497k