This work is licensed under a Creative Commons Attribution 4.0 International License.
Highly Sensitive, Selective and Stable NO2 Gas Sensor Based on Porous Influenced SnO2 Bilayer Thin Films
Corresponding Author(s) : R. Yogasaraswathi
Asian Journal of Chemistry,
Vol. 35 No. 5 (2023): Vol 35 Issue 5, 2023
Abstract
In this work, an attempt has been made to fabricate SnO2 porous films using automated nebulizer spray pyrolysis technique with the influence of a porogen. Pure tin dioxide and porous tin dioxide (SnO2/SnO2) thin films were prepared from a precursor solution composed of SnCl2·2H2O and polyethylene glycol as a porogen. The structural, morphological, optical and gas sensing performance of the prepared thin films were characterized. The inclusion of porogen significantly improved the sensing property of porous SnO2 bilayer thin films and it was confirmed by structural, morphological and gas sensing performance studies. The optimized spray process parameter was determined finally in this work as SnO2 precursor strength of 0.2 M for porous SnO2 layer. Under this condition, the increased lattice constant, lattice defect and increased pores diameter were achieved, which exhibited good gas sensitivity and selectivity towards NO2 gas at 250 ºC. The response and recovery time is decreased as 50%, the deduction limit is 0.9 ppm. In addition, during the five weeks test, the response level was observed nearly constant, which indicated that the SnO2 bilayer sensor has long-term stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Saruhan, R.L. Fomekong and S. Nahirniak, Front. Sens., 2, 657931 (2021); https://doi.org/10.3389/fsens.2021.657931
- A. Ponzoni, C. Baratto, N. Cattabiani, M. Falasconi, V. Galstyan, E. Nunez-Carmona, F. Rigoni, V. Sberveglieri, G. Zambotti and D. Zappa, Sensors, 17, 714 (2017); https://doi.org/10.3390/s17040714
- C. Wang, L. Yin, L. Zhang, D. Xiang and R. Gao, Sensors, 10, 2088 (2010); https://doi.org/10.3390/s100302088
- G,F. Fine, L.M. Cavanagh, A. Afonja and R. Binions, Sensors, 10, 5469 (2010); https://doi.org/10.3390/s100605469
- O. Mounkachi, E. Salmani, M. Lakhal, H. Ez-Zahraouy, M. Hamedoun, M. Benaissa, A. Kara, A. Ennaoui and A. Benyoussef, Solar Energy Mater. Solar Cells, 148, 34 (2016); https://doi.org/10.1016/j.solmat.2015.09.062
- A.L. Resne and Z. Tariq, IOP Conf. Ser.: Mater. Sci. Eng., 571, 012105 (2019); https://doi.org/10.1088/1757-899X/571/1/012105
- E. Turan, M. Kul and S. Akin, J. Mater. Sci. Mater. Electron., 33, 15689 (2022); https://doi.org/10.1007/s10854-022-08472-7
- N. Najafi and S.M. Rozati, Acta Phys. Pol. A, 131, 222 (2017); https://doi.org/10.12693/APhysPolA.131.222
- B.-K. Min and S.-D. Choi, Sens. Actuators B Chem., 98, 239 (2004); https://doi.org/10.1016/j.snb.2003.10.023
- D. Leng, L. Wu, H. Jiang, Yu. Zhao, J. Zhang, W. Li and L. Feng, Int. J. Photoenergy, 2012, 235971 (2012); https://doi.org/10.1155/2012/235971
- M. Marikkannan, V. Vishnukanthan, A. Vijayshankar, J. Mayandi and J.M. Pearce, AIP Adv., 5, 027122 (2015); https://doi.org/10.1063/1.4909542
- L.A. Patil, D.N. Suryawanshi, I.G. Pathan and D.G. Patil, Bull. Mater. Sci., 37, 425 (2014).
- J. Sundqvist, J. Lu, M. Ottosson and A. Hårsta, Thin Solid Films, 514, 63 (2006); https://doi.org/10.1016/j.tsf.2006.02.031
- G. Korotcenkov, M. DiBattista, J. Schwank and V. Brinzari, Mater. Sci. Eng. B, 77, 33 (2000); https://doi.org/10.1016/S0921-5107(00)00455-4
- G.E. Patil, D.D. Kajale, D.N. Chavan, N.K. Pawar, P.T. Ahire, S.D. Shinde, V.B. Gaikwad and G.H. Jain, Bull. Mater. Sci., 34, 1 (2011).
- K. Nomura, H. Shiozawa, T. Takada, H. Reuther and E. Richter, J. Mater. Sci. Mater. Electron., 8, 301 (1997); https://doi.org/10.1023/A:1018535322380
- A.K. Gangwar, R. Godiwal, S. Srivastava, P. Pal, G. Gupta and P. Singh, Mater. Res. Bull., 148, 111692 (2022); https://doi.org/10.1016/j.materresbull.2021.111692
- J. Rzaij, A. Khalil and S. Nawaf, World J. Adv. Res. Revs., 14, 051 (2022); https://doi.org/10.30574/wjarr.2022.14.1.0288
- Y. Yang, B. Maeng, D.G. Jung, J. Lee, Y. Kim, J.B. Kwon, H.K. An and D. Jung, Nanomaterials, 12, 3227 (2022); https://doi.org/10.3390/nano12183227
- U.D. Lad, N.S. Kokode and U.J. Tupe, Adv. Mat. Res., 1172, 67 (2022); https://doi.org/10.4028/p-2zz6i6
- M.A. Han, H.-J. Kim, H.C. Lee, J.-S. Park and H.-N. Lee, Appl. Surf. Sci., 481, 133 (2019); https://doi.org/10.1016/j.apsusc.2019.03.043
- S.J. Bu, Z.G. Jin, X.X. Liu, L.R. Yang and Z.J. Cheng, J. Eur. Ceram. Soc., 25, 673 (2005); https://doi.org/10.1016/j.jeurceramsoc.2003.12.025
- P. Zhou, Y. Shen, S. Zhao, G. Li, Y. Yin, R. Lu, S. Gao, C. Han and D. Wei, J. Alloys Compd., 789, 129 (2019); https://doi.org/10.1016/j.jallcom.2019.03.038
- S. Palanichamy, J. Raj Mohamed, K. Deva Arun Kumar, P.S. Satheesh Kumar, S. Pandiarajan and L. Amalraj, Optik, 194, 162887 (2019); https://doi.org/10.1016/j.ijleo.2019.05.093
- R. Mariappan, V. Ponnuswamy, P. Suresh, R. Suresh, M. Ragavendar and C. Sankar, Mater. Sci. Semicond. Process., 16, 825 (2013); https://doi.org/10.1016/j.mssp.2013.01.006
- K.D.A. Kumar, S. Valanarasu, K. Jeyadheepan, H.-S. Kim and D. Vikraman, J. Mater. Sci. Mater. Electron., 29, 3648 (2018); https://doi.org/10.1007/s10854-017-8295-2
- Z. Hajizadeh, R. Taheri-Ledari and F.R. Asl, Micro and Nano Technologies, Heterogeneous Micro and Nanoscale Composites for the Catalysis of Organic Reactions, Elsevier, pp. 33-51 (2022).
- V.S. Vinila and J. Isac, eds.: S. Thomas, N. Kalarikkal and A.R. Abraham, Synthesis and Structural Studies of Superconducting Perovskite GdBa2Ca3Cu4O10.5+d Nanosystems, In: Micro and Nano Technologies, Design, Fabrication and Characterization of Multifunctional Nano-materials, Elsevier, pp. 319-341 (2022).
- N.D. Mohd Said, M.Z. Sahdan, N. Nayan, H. Saim, F. Adriyanto, A.S. Bakri and M. Morsin, RSC Adv., 8, 29686 (2018); https://doi.org/10.1039/C8RA03950J
- S. Maheswari, M. Karunakaran, K. Kasirajan, L. Bruno Chandrasekar and P. Boomi, Sens. Actuators A Phys., 315, 112303 (2020); https://doi.org/10.1016/j.sna.2020.112303
- G. Singh, S.B. Shrivastava, D. Jain, S. Pandya and V. Ganesan, Defect and Diffusion Forum, 293, 99 (2009); https://doi.org/10.4028/www.scientific.net/DDF.293.99
- K.A. Eswar, A.A. Azlinda, F.S. Husairi, M. Rusop and S. Abdullah, Adv. Mater. Res., 701, 167 (2013); https://doi.org/10.4028/www.scientific.net/AMR.701.167
- M. Wang, J. Wang, W. Chen, Y. Cui and L. Wang, Mater. Chem. Phys., 97, 219 (2006); https://doi.org/10.1016/j.matchemphys.2005.07.072
- X. Wu, Z. Wei, L. Zhang, X. Wang, H. Yang and J. Jiang, J. Nanomater., 2014, 792102 (2014); https://doi.org/10.1155/2014/792102
- C.M. Liu, X.T. Zu, Q.M. Wei and L.M. Wang, J. Phys. D Appl. Phys., 39, 2494 (2006); https://doi.org/10.1088/0022-3727/39/12/004
- F. Ternero, L.G. Rosa, P. Urban, J.M. Montes and F.G. Cuevas, Metals, 11, 730 (2021); https://doi.org/10.3390/met11050730
- T. Sun, L. Dong, C. Wang, W. Guo, L. Wang and T. Liang, N. Carbon Mater., 28, 349 (2013); https://doi.org/10.1016/S1872-5805(13)60087-6
- V.L. Patil, S.A. Vanalakar, P.S. Patil and J.H. Kim, Sens. Actuators B Chem., 239, 1185 (2017); https://doi.org/10.1016/j.snb.2016.08.130
- Y. Xu, L. Zheng, C. Yang, W. Zheng, X. Liu and J. Zhang, ACS Appl. Mater. Interfaces, 12, 20704 (2020); https://doi.org/10.1021/acsami.0c04398
- S. Kim, D.-H. Cho, H.-K. Chang, H.-N. Lee, H.-J. Kim, T.J. Park and Y.M. Park, Sens. Actuators B Chem., 358, 131486 (2022); https://doi.org/10.1016/j.snb.2022.131486
- A.E. Mohajir, M.A.P. Yazdi, A. Krystianiak, O. Heintz, N. Martin, F. Berger and J.-B. Sanchez, Chemosensors, 10, 426 (2022); https://doi.org/10.3390/chemosensors10100426
- S. Das, S. Kumar, J. Singh and M. Kumar, Sens. Actuators B Chem., 367, 132114 (2022); https://doi.org/10.1016/j.snb.2022.132114
- J.-B. Yu, M. Sun, M. Yu, M. Yang, H. Yu, Y. Yang, X.-T. Dong and L. Xia, J. Alloys Compd., 920, 165884 (2022); https://doi.org/10.1016/j.jallcom.2022.165884
- L. Chen, H. Shi, C. Ye, X. Xia, Y. Li, C. Pan, Y. Song, J. Liu, H. Dong, D. Wang and X. Chen, Sens. Actuators B Chem., 375, 132864 (2023); https://doi.org/10.1016/j.snb.2022.132864
References
B. Saruhan, R.L. Fomekong and S. Nahirniak, Front. Sens., 2, 657931 (2021); https://doi.org/10.3389/fsens.2021.657931
A. Ponzoni, C. Baratto, N. Cattabiani, M. Falasconi, V. Galstyan, E. Nunez-Carmona, F. Rigoni, V. Sberveglieri, G. Zambotti and D. Zappa, Sensors, 17, 714 (2017); https://doi.org/10.3390/s17040714
C. Wang, L. Yin, L. Zhang, D. Xiang and R. Gao, Sensors, 10, 2088 (2010); https://doi.org/10.3390/s100302088
G,F. Fine, L.M. Cavanagh, A. Afonja and R. Binions, Sensors, 10, 5469 (2010); https://doi.org/10.3390/s100605469
O. Mounkachi, E. Salmani, M. Lakhal, H. Ez-Zahraouy, M. Hamedoun, M. Benaissa, A. Kara, A. Ennaoui and A. Benyoussef, Solar Energy Mater. Solar Cells, 148, 34 (2016); https://doi.org/10.1016/j.solmat.2015.09.062
A.L. Resne and Z. Tariq, IOP Conf. Ser.: Mater. Sci. Eng., 571, 012105 (2019); https://doi.org/10.1088/1757-899X/571/1/012105
E. Turan, M. Kul and S. Akin, J. Mater. Sci. Mater. Electron., 33, 15689 (2022); https://doi.org/10.1007/s10854-022-08472-7
N. Najafi and S.M. Rozati, Acta Phys. Pol. A, 131, 222 (2017); https://doi.org/10.12693/APhysPolA.131.222
B.-K. Min and S.-D. Choi, Sens. Actuators B Chem., 98, 239 (2004); https://doi.org/10.1016/j.snb.2003.10.023
D. Leng, L. Wu, H. Jiang, Yu. Zhao, J. Zhang, W. Li and L. Feng, Int. J. Photoenergy, 2012, 235971 (2012); https://doi.org/10.1155/2012/235971
M. Marikkannan, V. Vishnukanthan, A. Vijayshankar, J. Mayandi and J.M. Pearce, AIP Adv., 5, 027122 (2015); https://doi.org/10.1063/1.4909542
L.A. Patil, D.N. Suryawanshi, I.G. Pathan and D.G. Patil, Bull. Mater. Sci., 37, 425 (2014).
J. Sundqvist, J. Lu, M. Ottosson and A. Hårsta, Thin Solid Films, 514, 63 (2006); https://doi.org/10.1016/j.tsf.2006.02.031
G. Korotcenkov, M. DiBattista, J. Schwank and V. Brinzari, Mater. Sci. Eng. B, 77, 33 (2000); https://doi.org/10.1016/S0921-5107(00)00455-4
G.E. Patil, D.D. Kajale, D.N. Chavan, N.K. Pawar, P.T. Ahire, S.D. Shinde, V.B. Gaikwad and G.H. Jain, Bull. Mater. Sci., 34, 1 (2011).
K. Nomura, H. Shiozawa, T. Takada, H. Reuther and E. Richter, J. Mater. Sci. Mater. Electron., 8, 301 (1997); https://doi.org/10.1023/A:1018535322380
A.K. Gangwar, R. Godiwal, S. Srivastava, P. Pal, G. Gupta and P. Singh, Mater. Res. Bull., 148, 111692 (2022); https://doi.org/10.1016/j.materresbull.2021.111692
J. Rzaij, A. Khalil and S. Nawaf, World J. Adv. Res. Revs., 14, 051 (2022); https://doi.org/10.30574/wjarr.2022.14.1.0288
Y. Yang, B. Maeng, D.G. Jung, J. Lee, Y. Kim, J.B. Kwon, H.K. An and D. Jung, Nanomaterials, 12, 3227 (2022); https://doi.org/10.3390/nano12183227
U.D. Lad, N.S. Kokode and U.J. Tupe, Adv. Mat. Res., 1172, 67 (2022); https://doi.org/10.4028/p-2zz6i6
M.A. Han, H.-J. Kim, H.C. Lee, J.-S. Park and H.-N. Lee, Appl. Surf. Sci., 481, 133 (2019); https://doi.org/10.1016/j.apsusc.2019.03.043
S.J. Bu, Z.G. Jin, X.X. Liu, L.R. Yang and Z.J. Cheng, J. Eur. Ceram. Soc., 25, 673 (2005); https://doi.org/10.1016/j.jeurceramsoc.2003.12.025
P. Zhou, Y. Shen, S. Zhao, G. Li, Y. Yin, R. Lu, S. Gao, C. Han and D. Wei, J. Alloys Compd., 789, 129 (2019); https://doi.org/10.1016/j.jallcom.2019.03.038
S. Palanichamy, J. Raj Mohamed, K. Deva Arun Kumar, P.S. Satheesh Kumar, S. Pandiarajan and L. Amalraj, Optik, 194, 162887 (2019); https://doi.org/10.1016/j.ijleo.2019.05.093
R. Mariappan, V. Ponnuswamy, P. Suresh, R. Suresh, M. Ragavendar and C. Sankar, Mater. Sci. Semicond. Process., 16, 825 (2013); https://doi.org/10.1016/j.mssp.2013.01.006
K.D.A. Kumar, S. Valanarasu, K. Jeyadheepan, H.-S. Kim and D. Vikraman, J. Mater. Sci. Mater. Electron., 29, 3648 (2018); https://doi.org/10.1007/s10854-017-8295-2
Z. Hajizadeh, R. Taheri-Ledari and F.R. Asl, Micro and Nano Technologies, Heterogeneous Micro and Nanoscale Composites for the Catalysis of Organic Reactions, Elsevier, pp. 33-51 (2022).
V.S. Vinila and J. Isac, eds.: S. Thomas, N. Kalarikkal and A.R. Abraham, Synthesis and Structural Studies of Superconducting Perovskite GdBa2Ca3Cu4O10.5+d Nanosystems, In: Micro and Nano Technologies, Design, Fabrication and Characterization of Multifunctional Nano-materials, Elsevier, pp. 319-341 (2022).
N.D. Mohd Said, M.Z. Sahdan, N. Nayan, H. Saim, F. Adriyanto, A.S. Bakri and M. Morsin, RSC Adv., 8, 29686 (2018); https://doi.org/10.1039/C8RA03950J
S. Maheswari, M. Karunakaran, K. Kasirajan, L. Bruno Chandrasekar and P. Boomi, Sens. Actuators A Phys., 315, 112303 (2020); https://doi.org/10.1016/j.sna.2020.112303
G. Singh, S.B. Shrivastava, D. Jain, S. Pandya and V. Ganesan, Defect and Diffusion Forum, 293, 99 (2009); https://doi.org/10.4028/www.scientific.net/DDF.293.99
K.A. Eswar, A.A. Azlinda, F.S. Husairi, M. Rusop and S. Abdullah, Adv. Mater. Res., 701, 167 (2013); https://doi.org/10.4028/www.scientific.net/AMR.701.167
M. Wang, J. Wang, W. Chen, Y. Cui and L. Wang, Mater. Chem. Phys., 97, 219 (2006); https://doi.org/10.1016/j.matchemphys.2005.07.072
X. Wu, Z. Wei, L. Zhang, X. Wang, H. Yang and J. Jiang, J. Nanomater., 2014, 792102 (2014); https://doi.org/10.1155/2014/792102
C.M. Liu, X.T. Zu, Q.M. Wei and L.M. Wang, J. Phys. D Appl. Phys., 39, 2494 (2006); https://doi.org/10.1088/0022-3727/39/12/004
F. Ternero, L.G. Rosa, P. Urban, J.M. Montes and F.G. Cuevas, Metals, 11, 730 (2021); https://doi.org/10.3390/met11050730
T. Sun, L. Dong, C. Wang, W. Guo, L. Wang and T. Liang, N. Carbon Mater., 28, 349 (2013); https://doi.org/10.1016/S1872-5805(13)60087-6
V.L. Patil, S.A. Vanalakar, P.S. Patil and J.H. Kim, Sens. Actuators B Chem., 239, 1185 (2017); https://doi.org/10.1016/j.snb.2016.08.130
Y. Xu, L. Zheng, C. Yang, W. Zheng, X. Liu and J. Zhang, ACS Appl. Mater. Interfaces, 12, 20704 (2020); https://doi.org/10.1021/acsami.0c04398
S. Kim, D.-H. Cho, H.-K. Chang, H.-N. Lee, H.-J. Kim, T.J. Park and Y.M. Park, Sens. Actuators B Chem., 358, 131486 (2022); https://doi.org/10.1016/j.snb.2022.131486
A.E. Mohajir, M.A.P. Yazdi, A. Krystianiak, O. Heintz, N. Martin, F. Berger and J.-B. Sanchez, Chemosensors, 10, 426 (2022); https://doi.org/10.3390/chemosensors10100426
S. Das, S. Kumar, J. Singh and M. Kumar, Sens. Actuators B Chem., 367, 132114 (2022); https://doi.org/10.1016/j.snb.2022.132114
J.-B. Yu, M. Sun, M. Yu, M. Yang, H. Yu, Y. Yang, X.-T. Dong and L. Xia, J. Alloys Compd., 920, 165884 (2022); https://doi.org/10.1016/j.jallcom.2022.165884
L. Chen, H. Shi, C. Ye, X. Xia, Y. Li, C. Pan, Y. Song, J. Liu, H. Dong, D. Wang and X. Chen, Sens. Actuators B Chem., 375, 132864 (2023); https://doi.org/10.1016/j.snb.2022.132864