This work is licensed under a Creative Commons Attribution 4.0 International License.
Quantum Chemical Study for Structure, Electronic and NLO Properties of 2-Amino-4-nitrotoluene and 2-Amino-5-nitrotoluene
Corresponding Author(s) : B. Venkatram Reddy
Asian Journal of Chemistry,
Vol. 35 No. 5 (2023): Vol 35 Issue 5, 2023
Abstract
Molecular structure, molecular orbital energies; and global reactivity parameters of 2-amino-4-nitrotoluene (2A4NT) and 2-amino-5-nitrotoluene (2A5NT) were studied using DFT/B3LYP/6-311++G(d,p) level of theory. The energy difference between HOMO and LUMO was found to be 3.35 eV and 3.41 eV, respectively. Computed electrophilicity index values (ω = 12.63 and 14.61) demonstrate that the molecules are strong electrophile. The reactive sites and charge distribution of the compounds were analyzed by MEP surface. The non-linear optical activity of title compounds was studied by calculating the values of total dipole moment and mean first order hyperpolarizability. The natural charges of the molecules were obtained from NBO analysis; and the entire atomic charges were acquired by means of Mulliken study. The NMR (13C & 1H) theoretical chemical shifts were predicted by using GIAO approach in DMSO-d6 solvent. The values of energy, oscillator strength and absorption wavelength were computed from the UV-Vis spectra using TD-DFT method.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.S. Furnell, Vogel’ Text Book of Practical Organic Chemistry, Longman /Wiley: New York, Edn. 5 (1989).
- L.G. Wade, Advanced Organic Chemistry, Wiley: New York, Edn. 4, p. 723 (1992).
- J.T. Houpt, G.J. Leach, L.R. Williams, M.S. Johnson and G. Reddy, Int. J. Toxicol., 32, 99 (2013); https://doi.org/10.1177/1091581813480
- J.K. Dunnick, M.R. Elwell and J.R. Bucher, Fundam. Appl. Toxicol., 22, 411 (1994); https://doi.org/10.1006/faat.1994.1047
- A.G. Bayer, Reproduction/Developmental Toxicity Screening Test in Rats after Oral Administration (2002).
- N.K. Green, B.W. Palmer, C. Rader, (Enoch) S.-H. Ho, Z. Zaccardi, D.J. Ludlow, M.J. Lutz, A. Alejandro, M.F. Nielson, G.A. Valdivia-Berroeta, C. Chartrand, P. Peterson, D.J. Michaelis and J.A. Johnson, ACS Appl. Electron. Mater., 4, 4316 (2022); https://doi.org/10.1364/FIO.2022.JW5B.22
- J.H.S. Green, D.J. Harrison and W. Kynaston, Spectrochim. Acta A, 27, 793 (1971); https://doi.org/10.1016/0584-8539(71)80158-7
- P.R.K. Rao, Proc. Indian Acad. Sci. Sect. A Phys. Sci., 55, 232 (1962); https://doi.org/10.1007/BF03048981
- N. Sundraganesan, G. Elango, S. Sebastian and P. Subramani, Indian J. Pure Appl. Phys., 47, 481 (2009).
- J.H.S. Green, Spectrochim. Acta A, 18, 39 (1962); https://doi.org/10.1016/0371-1951(62)80049-6
- J.K. Wilmshurst and H.J. Bernstein, Can. J. Chem., 35, 911 (1957); https://doi.org/10.1139/v57-123
- W. Rong, L. Ming and G. Zhao, Chin. J. Spectrosc. Lab., 244 (2004).
- V.K. Mehrotra, Indian J. Pure Appl. Phys., 6, 691 (1968).
- G. Thakur, V.B. Sing and N.L. Sing, Indian J. Pure Appl. Phys., 7, 107 (1969).
- S. Mohan and P. Feridoun, Indian J. Pure Appl. Phys., 24, 570 (1986).
- R.B. Sing and D.K. Rai, Indian J. Pure Appl. Phys., 20, 330 (1982).
- C.P.D. Dwivedi and S.N. Sharma, Indian J. Pure Appl. Phys., 11, 447 (1973).
- S. Ramalingam, S. Periandy, M. Govindarajan and S. Mohan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 1308 (2010); https://doi.org/10.1016/j.saa.2009.12.072
- V. Krishnakumar, K. Murugeswari, N. Prabavathi and R. Mathammal, Spectrochim. Acta A Mol. Biomol. Spectrosc., 91, 1 (2012); https://doi.org/10.1016/j.saa.2012.01.038
- J.K. Ojha, B.V. Reddy and G. Ramana Rao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 96, 632 (2012); https://doi.org/10.1016/j.saa.2012.06.035
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/physrevb.37.785
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09 Revision B.01, Wallingford CT: Gaussian, Inc. (2010).
- D.F.V. Lewis, C. Ioannides and D.V. Parke, Xenobiotica, 24, 401 (1994); https://doi.org/10.3109/00498259409043243
- N.R. Sheela, S. Muthu and S. Sampathkrishnan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 120, 237 (2014); https://doi.org/10.1016/j.saa.2013.10.007
- G. Ramesh and B.V. Reddy, J. Mol. Struct., 1160, 271 (2018); https://doi.org/10.1016/j.molstruc.2018.01.083
- G. Ramesh, P.V.R. Rao, K. Srishailam and B.V. Reddy, Braz. J. Phys., 53, 45 (2023); https://doi.org/10.1007/s13538-023-01255-3
- K. Benbouguerra, N. Chafai, S. Chafaa, Y.I. Touahria and H. Tlidjane, J. Mol. Struct., 1239, 130480 (2021); https://doi.org/10.1016/j.molstruc.2021.130480
- J.I. Ahamed, M. Priya, P. Vinothkumar, K. Sathyamoorthy, P. Murali Manohar, J. Liu, M.F. Valan, J. Mol. Struct., 1202, 127241 (2020); https://doi.org/10.1016/j.molstruc.2019.127241
- D. Ezhumalai, I. Mathivanan and A. Chinnadurai, Spectrochim. Acta A Mol. Biomol. Spectrosc., 199, 209 (2018); https://doi.org/10.1016/j.saa.2018.03.053
- P. Thul, V.P. Gupta, V.J. Ram and P. Tandon, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 251 (2010); https://doi.org/10.1016/j.saa.2009.10.020
- Y.-X. Sun, Q.-L. Hao, W.-X. Wei, Z.-X. Yu, L.-D. Lu, X. Wang and Y.-S. Wang, J. Mol. Struct. THEOCHEM, 904, 74 (2009); https://doi.org/10.1016/j.theochem.2009.02.036
- G. Ramesh, J. Prashanth, J. Laxman Naik and B. Venkatram Reddy, J. Struct. Chem., 59, 1022 (2018); https://doi.org/10.1134/S0022476618050037
- C.S. Abraham, J.C. Prasana and S. Muthu, Spectrochim. Acta Mol. Biomol. Spectrosc., 181, 153 (2017); https://doi.org/10.1016/j.saa.2017.03.045
- S. Gunasekaran, S. Kumaresan, R. Arunbalaji, G. Anand and S. Srinivasan, J. Chem. Sci., 120, 315 (2008); https://doi.org/10.1007/s12039-008-0054-8
- R. Ditchfield, J. Chem. Phys., 56, 5688 (1972); https://doi.org/10.1063/1.1677088
- G. Ramesh and B.V. Reddy, Polycycl. Arom. Compd., 43, 2488 (2022); https://doi.org/10.1080/10406638.2022.2046614
- A.R. Choudhury and T.N. Guru Row, Acta Crystallogr. Sect. E Struct. Rep. Online, 60, o1595 (2004); https://doi.org/10.1107/S1600536804020343
- Z.-D. Liu, Y. Qu, M.-Y. Tan and H.-L. Zhu, Acta Crystallogr., E60, m1343 (2004); https://doi.org/10.1107/S1600536804021014
- G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, D. Van Norstrand: New York (1945).
References
B.S. Furnell, Vogel’ Text Book of Practical Organic Chemistry, Longman /Wiley: New York, Edn. 5 (1989).
L.G. Wade, Advanced Organic Chemistry, Wiley: New York, Edn. 4, p. 723 (1992).
J.T. Houpt, G.J. Leach, L.R. Williams, M.S. Johnson and G. Reddy, Int. J. Toxicol., 32, 99 (2013); https://doi.org/10.1177/1091581813480
J.K. Dunnick, M.R. Elwell and J.R. Bucher, Fundam. Appl. Toxicol., 22, 411 (1994); https://doi.org/10.1006/faat.1994.1047
A.G. Bayer, Reproduction/Developmental Toxicity Screening Test in Rats after Oral Administration (2002).
N.K. Green, B.W. Palmer, C. Rader, (Enoch) S.-H. Ho, Z. Zaccardi, D.J. Ludlow, M.J. Lutz, A. Alejandro, M.F. Nielson, G.A. Valdivia-Berroeta, C. Chartrand, P. Peterson, D.J. Michaelis and J.A. Johnson, ACS Appl. Electron. Mater., 4, 4316 (2022); https://doi.org/10.1364/FIO.2022.JW5B.22
J.H.S. Green, D.J. Harrison and W. Kynaston, Spectrochim. Acta A, 27, 793 (1971); https://doi.org/10.1016/0584-8539(71)80158-7
P.R.K. Rao, Proc. Indian Acad. Sci. Sect. A Phys. Sci., 55, 232 (1962); https://doi.org/10.1007/BF03048981
N. Sundraganesan, G. Elango, S. Sebastian and P. Subramani, Indian J. Pure Appl. Phys., 47, 481 (2009).
J.H.S. Green, Spectrochim. Acta A, 18, 39 (1962); https://doi.org/10.1016/0371-1951(62)80049-6
J.K. Wilmshurst and H.J. Bernstein, Can. J. Chem., 35, 911 (1957); https://doi.org/10.1139/v57-123
W. Rong, L. Ming and G. Zhao, Chin. J. Spectrosc. Lab., 244 (2004).
V.K. Mehrotra, Indian J. Pure Appl. Phys., 6, 691 (1968).
G. Thakur, V.B. Sing and N.L. Sing, Indian J. Pure Appl. Phys., 7, 107 (1969).
S. Mohan and P. Feridoun, Indian J. Pure Appl. Phys., 24, 570 (1986).
R.B. Sing and D.K. Rai, Indian J. Pure Appl. Phys., 20, 330 (1982).
C.P.D. Dwivedi and S.N. Sharma, Indian J. Pure Appl. Phys., 11, 447 (1973).
S. Ramalingam, S. Periandy, M. Govindarajan and S. Mohan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 1308 (2010); https://doi.org/10.1016/j.saa.2009.12.072
V. Krishnakumar, K. Murugeswari, N. Prabavathi and R. Mathammal, Spectrochim. Acta A Mol. Biomol. Spectrosc., 91, 1 (2012); https://doi.org/10.1016/j.saa.2012.01.038
J.K. Ojha, B.V. Reddy and G. Ramana Rao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 96, 632 (2012); https://doi.org/10.1016/j.saa.2012.06.035
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/physrevb.37.785
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09 Revision B.01, Wallingford CT: Gaussian, Inc. (2010).
D.F.V. Lewis, C. Ioannides and D.V. Parke, Xenobiotica, 24, 401 (1994); https://doi.org/10.3109/00498259409043243
N.R. Sheela, S. Muthu and S. Sampathkrishnan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 120, 237 (2014); https://doi.org/10.1016/j.saa.2013.10.007
G. Ramesh and B.V. Reddy, J. Mol. Struct., 1160, 271 (2018); https://doi.org/10.1016/j.molstruc.2018.01.083
G. Ramesh, P.V.R. Rao, K. Srishailam and B.V. Reddy, Braz. J. Phys., 53, 45 (2023); https://doi.org/10.1007/s13538-023-01255-3
K. Benbouguerra, N. Chafai, S. Chafaa, Y.I. Touahria and H. Tlidjane, J. Mol. Struct., 1239, 130480 (2021); https://doi.org/10.1016/j.molstruc.2021.130480
J.I. Ahamed, M. Priya, P. Vinothkumar, K. Sathyamoorthy, P. Murali Manohar, J. Liu, M.F. Valan, J. Mol. Struct., 1202, 127241 (2020); https://doi.org/10.1016/j.molstruc.2019.127241
D. Ezhumalai, I. Mathivanan and A. Chinnadurai, Spectrochim. Acta A Mol. Biomol. Spectrosc., 199, 209 (2018); https://doi.org/10.1016/j.saa.2018.03.053
P. Thul, V.P. Gupta, V.J. Ram and P. Tandon, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 251 (2010); https://doi.org/10.1016/j.saa.2009.10.020
Y.-X. Sun, Q.-L. Hao, W.-X. Wei, Z.-X. Yu, L.-D. Lu, X. Wang and Y.-S. Wang, J. Mol. Struct. THEOCHEM, 904, 74 (2009); https://doi.org/10.1016/j.theochem.2009.02.036
G. Ramesh, J. Prashanth, J. Laxman Naik and B. Venkatram Reddy, J. Struct. Chem., 59, 1022 (2018); https://doi.org/10.1134/S0022476618050037
C.S. Abraham, J.C. Prasana and S. Muthu, Spectrochim. Acta Mol. Biomol. Spectrosc., 181, 153 (2017); https://doi.org/10.1016/j.saa.2017.03.045
S. Gunasekaran, S. Kumaresan, R. Arunbalaji, G. Anand and S. Srinivasan, J. Chem. Sci., 120, 315 (2008); https://doi.org/10.1007/s12039-008-0054-8
R. Ditchfield, J. Chem. Phys., 56, 5688 (1972); https://doi.org/10.1063/1.1677088
G. Ramesh and B.V. Reddy, Polycycl. Arom. Compd., 43, 2488 (2022); https://doi.org/10.1080/10406638.2022.2046614
A.R. Choudhury and T.N. Guru Row, Acta Crystallogr. Sect. E Struct. Rep. Online, 60, o1595 (2004); https://doi.org/10.1107/S1600536804020343
Z.-D. Liu, Y. Qu, M.-Y. Tan and H.-L. Zhu, Acta Crystallogr., E60, m1343 (2004); https://doi.org/10.1107/S1600536804021014
G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, D. Van Norstrand: New York (1945).