This work is licensed under a Creative Commons Attribution 4.0 International License.
First-Order Derivative Spectrophotometry Method with Triapine as Chelating Agent for Simultaneous Determination of Barium(II) and Lead(II)
Corresponding Author(s) : V. Veeranna
Asian Journal of Chemistry,
Vol. 35 No. 5 (2023): Vol 35 Issue 5, 2023
Abstract
A simple, selective and sensitive first-order spectrophotometric method was used for the simultaneous determination of Ba(II) and Pb(II) with triapine as chelating agent. When triapine reagent was mixed with Ba(II) and Pb(II) solutions, it produces a light green colour in a basic medium. Maximum peaks for both Ba(II) and Pb(II) were observed at pH 8.5 (basic buffer solution) between 350 and 395 nm. Ba(II)-triapine has a molar absorbance of 5.276 × 106 L mol-1 cm-1 and a Sandell’s sensitivity of 0.000189 g/cm2. Similarly, they are 9.421 × 105 L mol-1 cm-1 and 0.00106 g/cm2 for Pb(II)-triapine, respectively. The stability constants of Ba(II)-triapine and Pb(II)-trapine complexes are 3.207 × 104 and 5.118 × 104, respectively. The effects of Ba(II)-triapine and Pb(II)-triapine concentrations on amplitude were also studied. The detection and quantification limits for Ba(II)-triapine are 0.0882 g/mL and 0.746 g/mL, respectively. Similarly, detection and quantification values were 0.089 g/mL and 0.745 g/mL for Pb(II)-triapine, respectively. The developed or proposed method was used to examine biological samples of carrots, onions, beans, paints, milk powder and alloys. The sample results were close to the certified reference values for the ICP-AES, FDA and AAS methods.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Asli, M. Azizzadeh, A. Moghaddamjafari and M. Mohsenzadeh, Biol. Trace Elem. Res., 194, 390 (2020); https://doi.org/10.1007/s12011-019-01788-2
- K.O. Soetan, C.O. Olaiya and O.E. Oyewole, Afr. J. Food Sci., 4, 200 (2010).
- C.S. Silva, C. Moutinho, A. Ferreira da Vinha and C. Matos, Int. J. Soc. Res. Methodol., 13, 57 (2019).
- M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair and M. Sadeghi, Front. Pharmacol., 12, 643972 (2021); https://doi.org/10.3389/fphar.2021.643972
- R. Martínez-Guijarro, M. Paches, I. Romero and D. Aguado, Adv. Environ. Eng. Res., 2, 33 (2021); https://doi.org/10.21926/aeer.2104033
- M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew and K.N. Beeregowda, Interdiscip. Toxicol., 7, 60 (2014); https://doi.org/10.2478/intox-2014-0009
- B.A. García Grajeda, S.G. Soto Acosta, S.A. Aguila, H.P. Guevara, M.E. Díaz-García, A.C. Enríquez and J.J. Campos-Gaxiola, RSC Adv., 7, 31611 (2017); https://doi.org/10.1039/C7RA03861E
- J.A. Cotruvo, J. Am. Water Works Assoc., 109, 44 (2017); https://doi.org/10.5942/jawwa.2017.109.0087
- V. Meucci, F. Battaglia, V. Marchetti, E. Gori and L. Intorre, MethodsX, 7, 101154 (2020); https://doi.org/10.1016/j.mex.2020.101154
- G. Kutralam-Muniasamy, F. Pérez-Guevara, I.E. Martínez and V.C. Shruti, J. Hazard. Mater., 415, 125755 (2021); https://doi.org/10.1016/j.jhazmat.2021.125755
- Z. Zhang, Z. Wang, Q. Li, H. Zou and Y. Shi, Talanta, 119, 613 (2014); https://doi.org/10.1016/j.talanta.2013.11.010
- H. Sereshti, Y. Entezari Heravi and S. Samadi, Talanta, 97, 235 (2012); https://doi.org/10.1016/j.talanta.2012.04.024
- H. Bagheri, A. Afkhami, H. Khoshsafar, M. Rezaei and A. Shirzadmehr, Sens. Actuators B Chem., 186, 451 (2013); https://doi.org/10.1016/j.snb.2013.06.051
- Y. Guo, H. Zhao, Y. Han, X. Liu, S. Guan, Q. Zhang and X. Bian, Spectrochim. Acta A Mol. Biomol. Spectrosc., 173, 532 (2017); https://doi.org/10.1016/j.saa.2016.10.003
- R.-X. Xu, X.-Y. Yu, C. Gao, Y.-J. Jiang, D.-D. Han, J.-H. Liu and X.-J. Huang, Anal. Chim. Acta, 790, 31 (2013); https://doi.org/10.1016/j.aca.2013.06.040
- A.B. Webster, A. Ganswindt, C. Small and R. Rossouw, MethodsX, 8, 101441 (2021); https://doi.org/10.1016/j.mex.2021.101441
- A.R. Khorrami, T. Hashempur, A. Mahmoudi and A.R. Karimi, Microchem. J., 84, 75 (2006); https://doi.org/10.1016/j.microc.2006.04.008
- C. Huang and B. Hu, Spectrochim. Acta B At. Spectrosc., 63, 437 (2008); https://doi.org/10.1016/j.sab.2007.12.010
- J.S. Maria Nithya and A. Pandurangan, RSC Adv., 4, 32031 (2014); https://doi.org/10.1039/C4RA04846F
- A. Garcia Rodriguez, Talanta, 47, 463 (1998); https://doi.org/10.1016/S0039-9140(98)00157-X
- J. Ghasemi, N. Shahabadi and H.R. Seraji, Anal. Chim. Acta, 510, 121 (2004); https://doi.org/10.1016/j.aca.2003.12.053
- R.B. Singh, B.S. Garg and R.P. Singh, Talanta, 25, 619 (1978); https://doi.org/10.1016/0039-9140(78)80163-5
- M.F. Zaltariov, M. Hammerstad, H.J. Arabshahi, K. Jovanovic, K.W. Richter, M. Cazacu, S. Shova, M. Balan, N.H. Andersen, S. Raduloviæ, J. Reynisson, K.K. Andersson and V.B. Arion, Inorg. Chem., 56, 3532 (2017); https://doi.org/10.1021/acs.inorgchem.6b03178
- V. Pósa, B. Hajdu, G. Tóth, O. Dömötör, C.R. Kowol, B.K. Keppler, G. Spengler, B. Gyurcsik and É.A. Enyedy, J. Inorg. Biochem., 231, 111786 (2022); https://doi.org/10.1016/j.jinorgbio.2022.111786
- O. Dömötör, N.V. May, G.T. Gál, G. Spengler, A. Dobrova, V.B. Arion and É.A. Enyedy, Molecules, 27, 2044 (2022); https://doi.org/10.3390/molecules27072044
- A. Steinbrueck, A.C. Sedgwick, J.T. Brewster, K.-C. Yan, Y. Shang, D.M. Knoll, G.I. Vargas-Zúñiga, X.-P. He, H. Tian and J.L. Sessler, Chem. Soc. Rev., 49, 3726 (2020); https://doi.org/10.1039/C9CS00373H
- S. Nazimunnisa, V. Veeranna, V. Venkatalakshmi and S. Yallappa, Results Chem., 4, 100564 (2022); https://doi.org/10.1016/j.rechem.2022.100564
- J.S. Renny, L.L. Tomasevich, E.H. Tallmadge and D.B. Collum, Angew. Chem. Int. Ed., 52, 11998 (2013); https://doi.org/10.1002/anie.201304157
- K.B. Yatsimirskii, Instability Constants of Complex Compounds, Springer Science & Business Media (2012).
- A. Varghese, A.M.A. Khadar and B. Kalluraya, Spectrochim. Acta A Mol. Biomol. Spectrosc., 64, 383 (2006); https://doi.org/10.1016/j.saa.2005.07.034
References
M. Asli, M. Azizzadeh, A. Moghaddamjafari and M. Mohsenzadeh, Biol. Trace Elem. Res., 194, 390 (2020); https://doi.org/10.1007/s12011-019-01788-2
K.O. Soetan, C.O. Olaiya and O.E. Oyewole, Afr. J. Food Sci., 4, 200 (2010).
C.S. Silva, C. Moutinho, A. Ferreira da Vinha and C. Matos, Int. J. Soc. Res. Methodol., 13, 57 (2019).
M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair and M. Sadeghi, Front. Pharmacol., 12, 643972 (2021); https://doi.org/10.3389/fphar.2021.643972
R. Martínez-Guijarro, M. Paches, I. Romero and D. Aguado, Adv. Environ. Eng. Res., 2, 33 (2021); https://doi.org/10.21926/aeer.2104033
M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew and K.N. Beeregowda, Interdiscip. Toxicol., 7, 60 (2014); https://doi.org/10.2478/intox-2014-0009
B.A. García Grajeda, S.G. Soto Acosta, S.A. Aguila, H.P. Guevara, M.E. Díaz-García, A.C. Enríquez and J.J. Campos-Gaxiola, RSC Adv., 7, 31611 (2017); https://doi.org/10.1039/C7RA03861E
J.A. Cotruvo, J. Am. Water Works Assoc., 109, 44 (2017); https://doi.org/10.5942/jawwa.2017.109.0087
V. Meucci, F. Battaglia, V. Marchetti, E. Gori and L. Intorre, MethodsX, 7, 101154 (2020); https://doi.org/10.1016/j.mex.2020.101154
G. Kutralam-Muniasamy, F. Pérez-Guevara, I.E. Martínez and V.C. Shruti, J. Hazard. Mater., 415, 125755 (2021); https://doi.org/10.1016/j.jhazmat.2021.125755
Z. Zhang, Z. Wang, Q. Li, H. Zou and Y. Shi, Talanta, 119, 613 (2014); https://doi.org/10.1016/j.talanta.2013.11.010
H. Sereshti, Y. Entezari Heravi and S. Samadi, Talanta, 97, 235 (2012); https://doi.org/10.1016/j.talanta.2012.04.024
H. Bagheri, A. Afkhami, H. Khoshsafar, M. Rezaei and A. Shirzadmehr, Sens. Actuators B Chem., 186, 451 (2013); https://doi.org/10.1016/j.snb.2013.06.051
Y. Guo, H. Zhao, Y. Han, X. Liu, S. Guan, Q. Zhang and X. Bian, Spectrochim. Acta A Mol. Biomol. Spectrosc., 173, 532 (2017); https://doi.org/10.1016/j.saa.2016.10.003
R.-X. Xu, X.-Y. Yu, C. Gao, Y.-J. Jiang, D.-D. Han, J.-H. Liu and X.-J. Huang, Anal. Chim. Acta, 790, 31 (2013); https://doi.org/10.1016/j.aca.2013.06.040
A.B. Webster, A. Ganswindt, C. Small and R. Rossouw, MethodsX, 8, 101441 (2021); https://doi.org/10.1016/j.mex.2021.101441
A.R. Khorrami, T. Hashempur, A. Mahmoudi and A.R. Karimi, Microchem. J., 84, 75 (2006); https://doi.org/10.1016/j.microc.2006.04.008
C. Huang and B. Hu, Spectrochim. Acta B At. Spectrosc., 63, 437 (2008); https://doi.org/10.1016/j.sab.2007.12.010
J.S. Maria Nithya and A. Pandurangan, RSC Adv., 4, 32031 (2014); https://doi.org/10.1039/C4RA04846F
A. Garcia Rodriguez, Talanta, 47, 463 (1998); https://doi.org/10.1016/S0039-9140(98)00157-X
J. Ghasemi, N. Shahabadi and H.R. Seraji, Anal. Chim. Acta, 510, 121 (2004); https://doi.org/10.1016/j.aca.2003.12.053
R.B. Singh, B.S. Garg and R.P. Singh, Talanta, 25, 619 (1978); https://doi.org/10.1016/0039-9140(78)80163-5
M.F. Zaltariov, M. Hammerstad, H.J. Arabshahi, K. Jovanovic, K.W. Richter, M. Cazacu, S. Shova, M. Balan, N.H. Andersen, S. Raduloviæ, J. Reynisson, K.K. Andersson and V.B. Arion, Inorg. Chem., 56, 3532 (2017); https://doi.org/10.1021/acs.inorgchem.6b03178
V. Pósa, B. Hajdu, G. Tóth, O. Dömötör, C.R. Kowol, B.K. Keppler, G. Spengler, B. Gyurcsik and É.A. Enyedy, J. Inorg. Biochem., 231, 111786 (2022); https://doi.org/10.1016/j.jinorgbio.2022.111786
O. Dömötör, N.V. May, G.T. Gál, G. Spengler, A. Dobrova, V.B. Arion and É.A. Enyedy, Molecules, 27, 2044 (2022); https://doi.org/10.3390/molecules27072044
A. Steinbrueck, A.C. Sedgwick, J.T. Brewster, K.-C. Yan, Y. Shang, D.M. Knoll, G.I. Vargas-Zúñiga, X.-P. He, H. Tian and J.L. Sessler, Chem. Soc. Rev., 49, 3726 (2020); https://doi.org/10.1039/C9CS00373H
S. Nazimunnisa, V. Veeranna, V. Venkatalakshmi and S. Yallappa, Results Chem., 4, 100564 (2022); https://doi.org/10.1016/j.rechem.2022.100564
J.S. Renny, L.L. Tomasevich, E.H. Tallmadge and D.B. Collum, Angew. Chem. Int. Ed., 52, 11998 (2013); https://doi.org/10.1002/anie.201304157
K.B. Yatsimirskii, Instability Constants of Complex Compounds, Springer Science & Business Media (2012).
A. Varghese, A.M.A. Khadar and B. Kalluraya, Spectrochim. Acta A Mol. Biomol. Spectrosc., 64, 383 (2006); https://doi.org/10.1016/j.saa.2005.07.034