This work is licensed under a Creative Commons Attribution 4.0 International License.
Aquatic Weed Derived SnO2 Nanoparticle: Synthesis, Characterization and its Application for Degradation of Dyes and Wastewater Treatment
Corresponding Author(s) : Ajay Singh
Asian Journal of Chemistry,
Vol. 35 No. 5 (2023): Vol 35 Issue 5, 2023
Abstract
The spread and destruction of freshwater ecosystems by aquatic invasive organisms poses a threat to economic, social and environmental processes. Eichhornia crassipes (Mart.) Solms, commonly known as water hyacinth, is globally distributed, toxic and floating watery plant. Its rapid development causes an abundance of the plant to float on the surface of water, reducing the amount of oxygen in water and destroying the aquatic ecosystem. Thus, its invasive growth has become a global concern. Green synthesis method was used to synthesize stannous oxide nanoparticles from water hyacinth as a precursor. The plant extract acted as a reducing agent due to presence of carboxyl, hydroxyl and carbonyl groups. The UV-Vis analysis, XRD, SEM coupled with EDX and FT-IR were utilized for characterization of the nanoparticles. The results indicated that the nanoparticles produced have high potential to degrade the methyl orange and methylene blue dyes. The use of metal nanoparticles has also shown reduction of various pollutants varying from 60-90% in wastewater. When the concentration of these nanoparticles was doubled, they were found to be more effective under optimized conditions from wastewater.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- United Nations, Transforming Our World: The 2030 Agenda for Sustainable Development, Department of Economic and Social Affairs, United Nations: New York (2015).
- D. Fighir (Arsene), C. Teodosiu and S. Fiore, Water, 11, 1611 (2019); https://doi.org/10.3390/w11081611
- A. Padilla-Rivera and L.P. Güereca, Ecol. Indic., 103, 22 (2019); https://doi.org/10.1016/j.ecolind.2019.03.049
- F. Di Maria, S. Daskal and O. Ayalon, Ecol. Indic., 118, 106805 (2020); https://doi.org/10.1016/j.ecolind.2020.106805
- S. Pandey, B. Twala, R. Singh, A. Gehlot, A. Singh, E.C. Montero and N. Priyadarshi, Sustainability, 14, 11563 (2022); https://doi.org/10.3390/su141811563
- A.P. Tom, J.S. Jayakumar, M. Biju, J. Somarajan and M.A. Ibrahim, Energy Nexus, 4, 100022 (2021); https://doi.org/10.1016/j.nexus.2021.100022
- S. Lata and Siddharth, Energy Nexus, 3, 100020 (2021); https://doi.org/10.1016/j.nexus.2021.100020
- T. Senfter, L. Fritsch, M. Berger, T. Kofler, C. Mayerl, M. Pillei and M. Kraxner, Carbon Resour. Convers., 4, 132 (2021); https://doi.org/10.1016/j.crcon.2021.03.001
- J. Wang, Y. Ji, F. Zhang, D. Wang, X. He and C. Wang, Carbon Resour. Conv., 2, 151 (2019); https://doi.org/10.1016/j.crcon.2019.06.001
- A. Zaher and N. Shehata, IOP Conf. Series Mater. Sci. Eng., 1046, 012021 (2021); https://doi.org/10.1088/1757-899X/1046/1/012021
- S. Anand, S.K. Bharti, N. Dviwedi, S.C. Barman and N. Kumar, Macrophytes for the Reclamation of Degraded Waterbodies with Potential for Bioenergy Production. In: Phytoremediation Potential of Bioenergy Plants, Springer: Singapore, pp. 333-351 (2017).
- Z. Masood, A. Ikhlaq, A. Akram, U.Y. Qazi, O.S. Rizvi, R. Javaid, A. Alazmi, M. Madkour and F. Qi, Catalysts, 12, 741 (2022); https://doi.org/10.3390/catal12070741
- K. Jain, A.S. Patel, V.P. Pardhi and S.J.S. Flora, Molecules, 26, 1797 (2021); https://doi.org/10.3390/molecules26061797
- J. Theron, J.A. Walker and T.E. Cloete, Crit. Rev. Microbiol., 34, 43 (2008); https://doi.org/10.1080/10408410701710442
- T. Humplik, J. Lee, S.C. O’Hern, B.A. Fellman, M.A. Baig, S.F. Hassan, M.A. Atieh, F. Rahman, T. Laoui, R. Karnik and E.N. Wang, Nanotechnology, 22, 292001 (2011); https://doi.org/10.1088/0957-4484/22/29/292001
- I. Khan, K. Saeed and I. Khan, Arab. J. Chem., 12, 908 (2019); https://doi.org/10.1016/j.arabjc.2017.05.011
- K. Jain, Dendrimers: Smart Nanoengineered Polymers for Bioinspired Applications in Drug Delivery, In: Biopolymer-Based Composites: Drug Delivery and Biomedical Applications, Woodhead Publishing: Cambridge, U.K., pp. 169-220 (2017).
- K. Jain, Nanosci. Nanotechnol. Asia, 9, 21 (2018); https://doi.org/10.2174/2210681208666171204163622
- A.A. Ansari, M. Naeem, S.S. Gill, F.M. AlZuaibr, Egypt. J. Aquat. Res., 46, 371 (2020); https://doi.org/10.1016/j.ejar.2020.03.002
- H.H. Ali, M.I.A. Fayed and I.I. Lazim, J. Glob. Innov. Agric. Sci., 10, 61 (2022); https://doi.org/10.22194/JGIAS/10.985
- S. Ali, Z. Abbas, M. Rizwan, I.E. Zaheer, I. Yavas, A. Ünay, M.M. Abdel-Daim, M. Bin-Jumah, M. Hasanuzzaman and D. Kalderis, Sustainability, 12, 1927 (2020); https://doi.org/10.3390/su12051927
- Z. Hu, X. Ma and L. Li, Energy Convers. Manage., 94, 337 (2015); https://doi.org/10.1016/j.enconman.2015.01.087
- A. Das, P. Ghosh, T. Paul, U. Ghosh, B.R. Pati and K.C. Mondal, 3 Biotech, 6, 70 (2016); https://doi.org/10.1007/s13205-016-0385-y
- M.S. Sanaa and A.S. Emad, J. Med. Plants Res., 6, 3950 (2012).
- V.B. Barua and A.S. Kalamdhad, J. Clean. Prod., 166, 273 (2017); https://doi.org/10.1016/j.jclepro.2017.07.231
- P. Kamaraj, R. Vennila, M. Arthanareeswari and S. Devikala, World J. Pharm. Pharm. Sci., 3, 382 (2014).
- X. Zhang, P. Sun, K. Wei, X. Huang and X. Zhang, Chem. Eng. J., 385, 123921 (2020); https://doi.org/10.1016/j.cej.2019.123921
- A.E. Brown, J.M. Adams, O.R. Grasham, M.A. Camargo-Valero and A.B. Ross, Energies, 13, 5983 (2020); https://doi.org/10.3390/en13225983
- N. Awoke, D. Pandey and A.B. Habtemariam, Regen. Eng. Transl. Med., 8, 407 (2021); https://doi.org/10.1007/s40883-021-00218-x
- S.N. Matussin, A.L. Tan, M.H. Harunsani, A. Mohammad, M.H. Cho and M.M. Khan, Mater. Chem. Phys., 252, 123293 (2020); https://doi.org/10.1016/j.matchemphys.2020.123293
References
United Nations, Transforming Our World: The 2030 Agenda for Sustainable Development, Department of Economic and Social Affairs, United Nations: New York (2015).
D. Fighir (Arsene), C. Teodosiu and S. Fiore, Water, 11, 1611 (2019); https://doi.org/10.3390/w11081611
A. Padilla-Rivera and L.P. Güereca, Ecol. Indic., 103, 22 (2019); https://doi.org/10.1016/j.ecolind.2019.03.049
F. Di Maria, S. Daskal and O. Ayalon, Ecol. Indic., 118, 106805 (2020); https://doi.org/10.1016/j.ecolind.2020.106805
S. Pandey, B. Twala, R. Singh, A. Gehlot, A. Singh, E.C. Montero and N. Priyadarshi, Sustainability, 14, 11563 (2022); https://doi.org/10.3390/su141811563
A.P. Tom, J.S. Jayakumar, M. Biju, J. Somarajan and M.A. Ibrahim, Energy Nexus, 4, 100022 (2021); https://doi.org/10.1016/j.nexus.2021.100022
S. Lata and Siddharth, Energy Nexus, 3, 100020 (2021); https://doi.org/10.1016/j.nexus.2021.100020
T. Senfter, L. Fritsch, M. Berger, T. Kofler, C. Mayerl, M. Pillei and M. Kraxner, Carbon Resour. Convers., 4, 132 (2021); https://doi.org/10.1016/j.crcon.2021.03.001
J. Wang, Y. Ji, F. Zhang, D. Wang, X. He and C. Wang, Carbon Resour. Conv., 2, 151 (2019); https://doi.org/10.1016/j.crcon.2019.06.001
A. Zaher and N. Shehata, IOP Conf. Series Mater. Sci. Eng., 1046, 012021 (2021); https://doi.org/10.1088/1757-899X/1046/1/012021
S. Anand, S.K. Bharti, N. Dviwedi, S.C. Barman and N. Kumar, Macrophytes for the Reclamation of Degraded Waterbodies with Potential for Bioenergy Production. In: Phytoremediation Potential of Bioenergy Plants, Springer: Singapore, pp. 333-351 (2017).
Z. Masood, A. Ikhlaq, A. Akram, U.Y. Qazi, O.S. Rizvi, R. Javaid, A. Alazmi, M. Madkour and F. Qi, Catalysts, 12, 741 (2022); https://doi.org/10.3390/catal12070741
K. Jain, A.S. Patel, V.P. Pardhi and S.J.S. Flora, Molecules, 26, 1797 (2021); https://doi.org/10.3390/molecules26061797
J. Theron, J.A. Walker and T.E. Cloete, Crit. Rev. Microbiol., 34, 43 (2008); https://doi.org/10.1080/10408410701710442
T. Humplik, J. Lee, S.C. O’Hern, B.A. Fellman, M.A. Baig, S.F. Hassan, M.A. Atieh, F. Rahman, T. Laoui, R. Karnik and E.N. Wang, Nanotechnology, 22, 292001 (2011); https://doi.org/10.1088/0957-4484/22/29/292001
I. Khan, K. Saeed and I. Khan, Arab. J. Chem., 12, 908 (2019); https://doi.org/10.1016/j.arabjc.2017.05.011
K. Jain, Dendrimers: Smart Nanoengineered Polymers for Bioinspired Applications in Drug Delivery, In: Biopolymer-Based Composites: Drug Delivery and Biomedical Applications, Woodhead Publishing: Cambridge, U.K., pp. 169-220 (2017).
K. Jain, Nanosci. Nanotechnol. Asia, 9, 21 (2018); https://doi.org/10.2174/2210681208666171204163622
A.A. Ansari, M. Naeem, S.S. Gill, F.M. AlZuaibr, Egypt. J. Aquat. Res., 46, 371 (2020); https://doi.org/10.1016/j.ejar.2020.03.002
H.H. Ali, M.I.A. Fayed and I.I. Lazim, J. Glob. Innov. Agric. Sci., 10, 61 (2022); https://doi.org/10.22194/JGIAS/10.985
S. Ali, Z. Abbas, M. Rizwan, I.E. Zaheer, I. Yavas, A. Ünay, M.M. Abdel-Daim, M. Bin-Jumah, M. Hasanuzzaman and D. Kalderis, Sustainability, 12, 1927 (2020); https://doi.org/10.3390/su12051927
Z. Hu, X. Ma and L. Li, Energy Convers. Manage., 94, 337 (2015); https://doi.org/10.1016/j.enconman.2015.01.087
A. Das, P. Ghosh, T. Paul, U. Ghosh, B.R. Pati and K.C. Mondal, 3 Biotech, 6, 70 (2016); https://doi.org/10.1007/s13205-016-0385-y
M.S. Sanaa and A.S. Emad, J. Med. Plants Res., 6, 3950 (2012).
V.B. Barua and A.S. Kalamdhad, J. Clean. Prod., 166, 273 (2017); https://doi.org/10.1016/j.jclepro.2017.07.231
P. Kamaraj, R. Vennila, M. Arthanareeswari and S. Devikala, World J. Pharm. Pharm. Sci., 3, 382 (2014).
X. Zhang, P. Sun, K. Wei, X. Huang and X. Zhang, Chem. Eng. J., 385, 123921 (2020); https://doi.org/10.1016/j.cej.2019.123921
A.E. Brown, J.M. Adams, O.R. Grasham, M.A. Camargo-Valero and A.B. Ross, Energies, 13, 5983 (2020); https://doi.org/10.3390/en13225983
N. Awoke, D. Pandey and A.B. Habtemariam, Regen. Eng. Transl. Med., 8, 407 (2021); https://doi.org/10.1007/s40883-021-00218-x
S.N. Matussin, A.L. Tan, M.H. Harunsani, A. Mohammad, M.H. Cho and M.M. Khan, Mater. Chem. Phys., 252, 123293 (2020); https://doi.org/10.1016/j.matchemphys.2020.123293