This work is licensed under a Creative Commons Attribution 4.0 International License.
Chalcone-based Ferrocenyl-Derivatives as an Antimicrobial Drug; A Review
Corresponding Author(s) : A. Mondal
Asian Journal of Chemistry,
Vol. 35 No. 5 (2023): Vol 35 Issue 5, 2023
Abstract
The lack of development of new antibiotics is the major concern at the present scenario. One key factor contributing to the rise of antibiotic-resistant bacteria is the widespread movement of people throughout the world. The world has seen the consequences of the migration in the case of COVID-19 very recently. To tackle or cope with the situation, development of new antibiotics is very essential, which can be inhibited multidrug-resistant bacteria. In this framework, chalcone-based ferrocenyl containing compounds showed a diversity of pharmacological properties and its derivatives possess a high degree of structural diversity and it is helpful for the discovery of new therapeutic agents. Thus, there is a need for new antibacterial drug candidates with increased strength, new targets, low cost, superior pharmacokinetic properties and minimum side effects. The present review concluded and focuses on the recent developments in the area of medicinal chemistry to explore the diverse chemical structures of potent antibacterial agents and also describes its structure-activity relationship studies (SAR). This review will help to the researchers in the medical field to find out the future generation potential drug discovery and development.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Aslam, W. Wang, M.I. Arshad, M. Khurshid, S. Muzammil, M.H. Rasool, M.A. Nisar, R.F. Alvi, M.A. Aslam, M.U. Qamar, M. Salamat and Z. Baloch, Infect. Drug Resist., 11, 1645 (2018); https://doi.org/10.2147/IDR.S173867
- S.B. Levy and B. Marshall, Nat. Med., 10(S12), S122 (2004); https://doi.org/10.1038/nm1145
- C. Ghosh and J. Haldar, ChemMedChem, 10, 1606 (2015); https://doi.org/10.1002/cmdc.201500299
- C. Nathan, Nature, 431, 899 (2004); https://doi.org/10.1038/431899a
- J.M. Munita and C.A. Arias, Microbiol. Spectr., 4, 1 (2016); https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
- M. Naeem, M. Adil, S.M. Naz, S.H. Abbas, M.Z.I. Khan, A. Khan and M.U. Khan, J. Postgrad. Med. Inst., 27, 42 (2012).
- H. Grundmann, M. Aires-de-Sousa, J. Boyce and E. Tiemersma, Lancet, 368, 874 (2006); https://doi.org/10.1016/S0140-6736(06)68853-3
- K.E. Dombrowski, W. Baldwin and J.E. Sheats, J. Organomet. Chem., 302, 281 (1986); https://doi.org/10.1016/0022-328X(86)80097-3
- M.F.R. Fouda, M.M. Abd-Elzaher, R.A. Abdelsamaia and A.A. Labib, Appl. Organomet. Chem., 21, 613 (2007); https://doi.org/10.1002/aoc.1202
- P. Meunier, I. Ouattara, B. Gautheron, J. Tirouflet, D. Camboli and J. Besançon, J. Med. Chem., 26, 351 (1991); https://doi.org/10.1016/0223-5234(91)90070-4
- S. Top, J. Tang, A. Vessieres, D. Carrez, C. Provot and G. Jaouen, Chem. Commun., 8, 955 (1996); https://doi.org/10.1039/CC9960000955
- A.S. Hassan, T.S. Hafez, S.A. Osman and M.M. Ali, Turk. J. Chem., 39, 1102 (2015); https://doi.org/10.3906/kim-1504-12
- A.S. ABD El-All, A.S. Hassan, S.A. Osman, H.A.A. Yosef, W.H. Abdel-Hady, M.A. El-Hashash, S.R. Atta-Allah, M.M. Ali and A.A. El Rashedy, Acta Pol. Pharm., 73, 79 (2016).
- P. Köpf-Maier and H. Köpf, Drugs Future, 11, 297 (1986).
- T.S. Hafez, S.A. Osman, H.A.A. Yosef, A.S. Abd El-All, A.S. Hassan, A.A. El-Sawy, M.M. Abdallah and M. Youns, Sci. Pharm., 81, 339 (2013); https://doi.org/10.3797/scipharm.1211-07
- B. Long, S. Liang, D. Xin, Y. Yang and J. Xiang, Eur. J. Med. Chem., 44, 2572 (2009); https://doi.org/10.1016/j.ejmech.2009.01.029
- C. Biot, N. Francois, L. Maciejewski, J. Brocard and D. Poulain, Bioorg. Med. Chem. Lett., 10, 839 (2000); https://doi.org/10.1016/S0960-894X(00)00120-7
- K. Kumar, B. Pradines, M. Madamet, R. Amalvict, N. Benoit and V. Kumar, Eur. J. Med. Chem., 87, 801 (2014); https://doi.org/10.1016/j.ejmech.2014.10.024
- T. Itoh, S. Shirakami, N. Ishida, Y. Yamashita, T. Yoshida, H.-S. Kim and Y. Wataya, Bioorg. Med. Chem. Lett., 10, 1657 (2000); https://doi.org/10.1016/S0960-894X(00)00313-9
- Y.Y. Dou, Y.F. Xie and L.F. Tang, Appl. Organomet. Chem., 22, 25 (2008); https://doi.org/10.1002/aoc.1345
- R.A. Hussain, A. Badshash, M. Sohail, B. Lal and A.A. Altaf, Inorg. Chem. Acta, 402, 133 (2013); https://doi.org/10.1016/j.ica.2013.04.003
- W. Liu, Y. Tang, Y. Guo, B. Sun, H. Zhu, Y. Xiao, D. Dong and C. Yang, Appl. Organomet. Chem., 26, 189 (2012); https://doi.org/10.1002/aoc.2837
- M.M. Abd-Elzaher and I.A.I. Ali, Appl. Organomet. Chem., 20, 107 (2006); https://doi.org/10.1002/aoc.1016
- A.Z. Al-Rubaie, S.A.S. Al-Jadaan, S.K. Muslim, E.A. Saeed, E.T. Ali, A.K.J. Al-Hasani, H.N.K. Al-Salman and S.A.M. Al-Fadal, J. Organomet. Chem., 774, 43 (2014); https://doi.org/10.1016/j.jorganchem.2014.10.007
- D.R. van Staveren and N. Metzler-Nolte, Chem. Rev., 104, 5931 (2004); https://doi.org/10.1021/cr0101510
- A.D. Sai Krishna, G. Panda and A.K. Kondapi, Arch. Biochem. Biophys., 438, 206 (2005); https://doi.org/10.1016/j.abb.2005.04.014
- R.H. Fish and G. Jaouen, Organometallics, 22, 2166 (2003); https://doi.org/10.1021/om0300777
- G. Di Carlo, N. Mascolo, A.A. Izzo and F. Capasso, Life Sci., 65, 337 (1999); https://doi.org/10.1016/S0024-3205(99)00120-4
- N.K. Sahu, S.S. Balbhadra, J. Choudhary and D.V. Kohli, Curr. Med. Chem., 19, 209 (2012); https://doi.org/10.2174/092986712803414132
- J. Muskinja, A. Burmudzija, Z. Ratkovic, B. Rankovic, M. Kosanic, G.A. Bogdanovic and S.B. Novakovic, Med. Chem. Res., 25, 1744 (2016); https://doi.org/10.1007/s00044-016-1609-8
- S. Moodley, N.A. Koorbanally, T. Moodley, D. Ramjugernath and M. Pillay, J. Microbiol. Methods, 104, 72 (2014); https://doi.org/10.1016/j.mimet.2014.06.014
- N. Ahmed, N.K. Konduru and M. Owais, Arab. J. Chem., 12, 1879 (2019); https://doi.org/10.1016/j.arabjc.2014.12.008
- J.R. Zgoda and J.R. Porter, Pharm. Biol., 39, 221 (2001); https://doi.org/10.1076/phbi.39.3.221.5934
- A.R. Twinkle, D.R. Leenaraj, Z. Ratkovic, B.S. Arunsasi, K.C. Bright and R. Reshma, J. Mol. Struct., 1210, 128049 (2020); https://doi.org/10.1016/j.molstruc.2020.128049
- L.L.E. Crouch, The Synthesis of Organometallic Chalcones, Preston, Lancashire, UK: University of Central Lancashire (2014).
- E.J. Henry, S.J. Bird, P. Gowland, M. Collins and J.P. Cassella, J. Antibiot., 73, 299 (2020); https://doi.org/10.1038/s41429-020-0280-y
- J.M. Andrews, J. Antimicrob. Chemother., 48(suppl_1), 5 (2001); https://doi.org/10.1093/jac/48.suppl_1.5
- A. Burmudzija, Z. Ratkovic, J. Muskinja, N. Jankovic, B. Rankovic, M. Kosanic and S. Dordevic, RSC Adv., 6, 91420 (2016); https://doi.org/10.1039/C6RA18977F
- Y.T. Liu, G.D. Lian, D.W. Yin and B.J. Su, Res. Chem. Intermed., 38, 1043 (2012); https://doi.org/10.1007/s11164-011-0440-6
References
B. Aslam, W. Wang, M.I. Arshad, M. Khurshid, S. Muzammil, M.H. Rasool, M.A. Nisar, R.F. Alvi, M.A. Aslam, M.U. Qamar, M. Salamat and Z. Baloch, Infect. Drug Resist., 11, 1645 (2018); https://doi.org/10.2147/IDR.S173867
S.B. Levy and B. Marshall, Nat. Med., 10(S12), S122 (2004); https://doi.org/10.1038/nm1145
C. Ghosh and J. Haldar, ChemMedChem, 10, 1606 (2015); https://doi.org/10.1002/cmdc.201500299
C. Nathan, Nature, 431, 899 (2004); https://doi.org/10.1038/431899a
J.M. Munita and C.A. Arias, Microbiol. Spectr., 4, 1 (2016); https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
M. Naeem, M. Adil, S.M. Naz, S.H. Abbas, M.Z.I. Khan, A. Khan and M.U. Khan, J. Postgrad. Med. Inst., 27, 42 (2012).
H. Grundmann, M. Aires-de-Sousa, J. Boyce and E. Tiemersma, Lancet, 368, 874 (2006); https://doi.org/10.1016/S0140-6736(06)68853-3
K.E. Dombrowski, W. Baldwin and J.E. Sheats, J. Organomet. Chem., 302, 281 (1986); https://doi.org/10.1016/0022-328X(86)80097-3
M.F.R. Fouda, M.M. Abd-Elzaher, R.A. Abdelsamaia and A.A. Labib, Appl. Organomet. Chem., 21, 613 (2007); https://doi.org/10.1002/aoc.1202
P. Meunier, I. Ouattara, B. Gautheron, J. Tirouflet, D. Camboli and J. Besançon, J. Med. Chem., 26, 351 (1991); https://doi.org/10.1016/0223-5234(91)90070-4
S. Top, J. Tang, A. Vessieres, D. Carrez, C. Provot and G. Jaouen, Chem. Commun., 8, 955 (1996); https://doi.org/10.1039/CC9960000955
A.S. Hassan, T.S. Hafez, S.A. Osman and M.M. Ali, Turk. J. Chem., 39, 1102 (2015); https://doi.org/10.3906/kim-1504-12
A.S. ABD El-All, A.S. Hassan, S.A. Osman, H.A.A. Yosef, W.H. Abdel-Hady, M.A. El-Hashash, S.R. Atta-Allah, M.M. Ali and A.A. El Rashedy, Acta Pol. Pharm., 73, 79 (2016).
P. Köpf-Maier and H. Köpf, Drugs Future, 11, 297 (1986).
T.S. Hafez, S.A. Osman, H.A.A. Yosef, A.S. Abd El-All, A.S. Hassan, A.A. El-Sawy, M.M. Abdallah and M. Youns, Sci. Pharm., 81, 339 (2013); https://doi.org/10.3797/scipharm.1211-07
B. Long, S. Liang, D. Xin, Y. Yang and J. Xiang, Eur. J. Med. Chem., 44, 2572 (2009); https://doi.org/10.1016/j.ejmech.2009.01.029
C. Biot, N. Francois, L. Maciejewski, J. Brocard and D. Poulain, Bioorg. Med. Chem. Lett., 10, 839 (2000); https://doi.org/10.1016/S0960-894X(00)00120-7
K. Kumar, B. Pradines, M. Madamet, R. Amalvict, N. Benoit and V. Kumar, Eur. J. Med. Chem., 87, 801 (2014); https://doi.org/10.1016/j.ejmech.2014.10.024
T. Itoh, S. Shirakami, N. Ishida, Y. Yamashita, T. Yoshida, H.-S. Kim and Y. Wataya, Bioorg. Med. Chem. Lett., 10, 1657 (2000); https://doi.org/10.1016/S0960-894X(00)00313-9
Y.Y. Dou, Y.F. Xie and L.F. Tang, Appl. Organomet. Chem., 22, 25 (2008); https://doi.org/10.1002/aoc.1345
R.A. Hussain, A. Badshash, M. Sohail, B. Lal and A.A. Altaf, Inorg. Chem. Acta, 402, 133 (2013); https://doi.org/10.1016/j.ica.2013.04.003
W. Liu, Y. Tang, Y. Guo, B. Sun, H. Zhu, Y. Xiao, D. Dong and C. Yang, Appl. Organomet. Chem., 26, 189 (2012); https://doi.org/10.1002/aoc.2837
M.M. Abd-Elzaher and I.A.I. Ali, Appl. Organomet. Chem., 20, 107 (2006); https://doi.org/10.1002/aoc.1016
A.Z. Al-Rubaie, S.A.S. Al-Jadaan, S.K. Muslim, E.A. Saeed, E.T. Ali, A.K.J. Al-Hasani, H.N.K. Al-Salman and S.A.M. Al-Fadal, J. Organomet. Chem., 774, 43 (2014); https://doi.org/10.1016/j.jorganchem.2014.10.007
D.R. van Staveren and N. Metzler-Nolte, Chem. Rev., 104, 5931 (2004); https://doi.org/10.1021/cr0101510
A.D. Sai Krishna, G. Panda and A.K. Kondapi, Arch. Biochem. Biophys., 438, 206 (2005); https://doi.org/10.1016/j.abb.2005.04.014
R.H. Fish and G. Jaouen, Organometallics, 22, 2166 (2003); https://doi.org/10.1021/om0300777
G. Di Carlo, N. Mascolo, A.A. Izzo and F. Capasso, Life Sci., 65, 337 (1999); https://doi.org/10.1016/S0024-3205(99)00120-4
N.K. Sahu, S.S. Balbhadra, J. Choudhary and D.V. Kohli, Curr. Med. Chem., 19, 209 (2012); https://doi.org/10.2174/092986712803414132
J. Muskinja, A. Burmudzija, Z. Ratkovic, B. Rankovic, M. Kosanic, G.A. Bogdanovic and S.B. Novakovic, Med. Chem. Res., 25, 1744 (2016); https://doi.org/10.1007/s00044-016-1609-8
S. Moodley, N.A. Koorbanally, T. Moodley, D. Ramjugernath and M. Pillay, J. Microbiol. Methods, 104, 72 (2014); https://doi.org/10.1016/j.mimet.2014.06.014
N. Ahmed, N.K. Konduru and M. Owais, Arab. J. Chem., 12, 1879 (2019); https://doi.org/10.1016/j.arabjc.2014.12.008
J.R. Zgoda and J.R. Porter, Pharm. Biol., 39, 221 (2001); https://doi.org/10.1076/phbi.39.3.221.5934
A.R. Twinkle, D.R. Leenaraj, Z. Ratkovic, B.S. Arunsasi, K.C. Bright and R. Reshma, J. Mol. Struct., 1210, 128049 (2020); https://doi.org/10.1016/j.molstruc.2020.128049
L.L.E. Crouch, The Synthesis of Organometallic Chalcones, Preston, Lancashire, UK: University of Central Lancashire (2014).
E.J. Henry, S.J. Bird, P. Gowland, M. Collins and J.P. Cassella, J. Antibiot., 73, 299 (2020); https://doi.org/10.1038/s41429-020-0280-y
J.M. Andrews, J. Antimicrob. Chemother., 48(suppl_1), 5 (2001); https://doi.org/10.1093/jac/48.suppl_1.5
A. Burmudzija, Z. Ratkovic, J. Muskinja, N. Jankovic, B. Rankovic, M. Kosanic and S. Dordevic, RSC Adv., 6, 91420 (2016); https://doi.org/10.1039/C6RA18977F
Y.T. Liu, G.D. Lian, D.W. Yin and B.J. Su, Res. Chem. Intermed., 38, 1043 (2012); https://doi.org/10.1007/s11164-011-0440-6