This work is licensed under a Creative Commons Attribution 4.0 International License.
CuO-Rice Starch Nanocomposites: Synthesis, Characterization and Antibacterial Properties
Corresponding Author(s) : Vinod Kumar
Asian Journal of Chemistry,
Vol. 35 No. 5 (2023): Vol 35 Issue 5, 2023
Abstract
In current study, the copper oxide-rice starch nanocomposites has been synthesized from the different salts of copper and rice starch. The synthesized nanocomposites were characterized by FT-IR, XRD, SEM, TGA and DSC spectroscopic methods. The spectroscopic analysis showed that the CuO-starch nanocomposite was formed and CuO nanoparticles (CuONPs) were uniformly dispersed in the starch network with relatively smooth surfaces in the CuO-starch nanocomposite. The average crystalline size of CuO-starch nanocomposites from different precursors viz. copper acetate, copper chloride and equimolar mixture of copper acetate and copper chloride were calculated as 3.13 nm, 6.46 nm and 17.42 nm, respectively, while average particle size were 1421, 1504 and 1796 nm, respectively. The TGA and DSC data showed that the CuO-starch nanocomposites were thermally stable. The nanocomposites were scrutinized by antibacterial activity against two tested bacterial strain Serratia marcescens (17.67 ± 0.90 mm) and Escherichia coli (16.3 ± 0.30). It was concluded that, CuO-starch nanocomposites were thermally stable and exhibited significant antibacterial activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Ujcic, S. Krejcikova, M. Nevoralova, A. Zhigunov, J. Dybal, Z. Krulis, P. Fulin, O. Nyc and M. Slouf, Front. Mater., 7, 9 (2020); https://doi.org/10.3389/fmats.2020.00009
- S. Liu, X. Li, L. Chen, L. Li, B. Li and J. Zhu, Int. J. Biol. Macromol., 104, 1330 (2017); https://doi.org/10.1016/j.ijbiomac.2017.05.174
- T. Jiang, Q. Duan, J. Zhu, H. Liu and L. Yu, Adv. Ind. Eng. Polym. Res., 3, 8 (2020); https://doi.org/10.1016/j.aiepr.2019.11.003
- C.I. Idumah and C.M. Obele, Surfaces Interfaces, 22, 100879 (2021); https://doi.org/10.1016/j.surfin.2020.100879
- A.M. Nafchi, A.K. Alias, S. Mahmud and M. Robal, J. Food Eng., 113, 511 (2012); https://doi.org/10.1016/j.jfoodeng.2012.07.017
- M.B. Gawande, A. Goswami, F.X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril and R.S. Varma, Chem. Rev., 116, 3722 (2016); https://doi.org/10.1021/acs.chemrev.5b00482
- S. Saran, G. Sharma, M. Kumar and M.I. Ali, Int. J. Pharm. Sci. Res., 8, 3887 (2017); https://doi.org/10.13040/IJPSR.0975-8232.8(9).3887-92
- G. Sharma, N.D. Jasuja, M. Kumar and M.I. Ali, J. Nanotechnol., 2015, 132675 (2015); https://doi.org/10.1155/2015/132675
- A.K. Chatterjee, R.K. Sarkar, A.P. Chattopadhyay, R. Chakraborty, P. Aich and T. Basu, Nanotechnology, 23, 085103 (2012); https://doi.org/10.1088/0957-4484/23/8/085103
- S.V.P. Ramaswamy, S. Narendhran and R. Sivaraj, Bull. Mater. Sci., 39, 361 (2016); https://doi.org/10.1007/s12034-016-1173-3
- J. Chen, B. Karmakar, M.A. Salem, A.Y. Alzahrani, M.Z. Bani-Fwaz, M.M. Abdel-Daim and A.F. El-Kott, Arab. J. Chem., 15, 103681 (2022); https://doi.org/10.1016/j.arabjc.2021.103681
- V.C. Verma, A. Kumar, M.G.H. Zaidi, A.K. Verma, J.P. Jaiswal, D.K. Singh, A. Singh and S. Agrawal, Int. J. Curr. Microbiol. Appl. Sci., 7, 211 (2018);
- https://doi.org/10.20546/ijcmas.2018.710.022
- J. Ma, W. Zhu, Y. Tian and Z. Wang, Nanoscale Res. Lett., 11, 200 (2016); https://doi.org/10.1186/s11671-016-1404-y
- K. Dasila and M. Singh, S. Afr. J. Bot., 145, 177 (2022); https://doi.org/10.1016/j.sajb.2021.07.020
- I. Govindaraju, G.Y. Zhuo, I. Chakraborty, S.K. Melanthota, S.S. Mal, B. Sarmah, V.J. Baruah, K.K. Mahato and N. Mazumder, Food Hydrocoll., 122, 107093 (2022); https://doi.org/10.1016/j.foodhyd.2021.107093
- A. Musa, K. Hakan, K. Suuml leyman and S.K. Derya, Afr. J. Biotechnol., 10, 2867 (2011); https://doi.org/10.5897/AJB10.1567
- P.V. Kowsik and N. Mazumder, Microsc. Res. Tech., 81, 1533 (2018); https://doi.org/10.1002/jemt.23160
- J.M. Fang, P.A. Fowler, J. Tomkinson and C.A.S. Hill, Carbohydr, Polym., 47, 245 (2002); https://doi.org/10.1016/S0144-8617(01)00187-4
- R. Kizil, J. Irudayaraj and K. Seetharaman, J. Agric. Food Chem., 50, 3912 (2002); https://doi.org/10.1021/jf011652p
- A. Lopez-Rubio, J.M. Clarke, Ben Scherer, D.L. Topping and E.P. Gilbert, Food Hydrocoll., 23, 1940 (2009); https://doi.org/10.1016/j.foodhyd.2009.01.003
- D. Fan, W. Ma, L. Wang, J. Huang, J. Zhao, H. Zhang and W. Chen, Stärke, 64, 598 (2012); https://doi.org/10.1002/star.201100200
- A. Hebeish, M.H. El-Rafie, M.A. El-Sheikh and M.E. El-Naggar, J. Inorg. Organomet. Polym. Mater., 24, 515 (2014); https://doi.org/10.1007/s10904-013-0004-x
- M. Kacurakova and M. Mathlouthi, Carbohydr. Res., 284, 145 (1996); https://doi.org/10.1016/0008-6215(95)00412-2
- M. Ahmad, A. Gani, I. Hassan, Q. Huang and H. Shabbir, Sci. Rep., 10, 3533 (2020); https://doi.org/10.1038/s41598-020-60380-0
- T.Y. Liu, Y. Ma, S.F. Yu, J. Shi and S. Xue, Innov. Food Sci. Emerg. Technol., 12, 586 (2011); https://doi.org/10.1016/j.ifset.2011.06.009
- K. Piyada, S. Waranyou and W. Thawien, Int. Food Res. J., 20, 439 (2013).
- W.-T. Yao, S.-H. Yu, Y. Zhou, J. Jiang, Q.-S. Wu, L. Zhang and J. Jiang, J. Phys. Chem. B, 109, 14011 (2005); https://doi.org/10.1021/jp0517605
- J. Prasad, V. Kumar, B. Chandra and N.D. Kandpal, Rasayan J. Chem., 15, 72 (2022); https://doi.org/10.31788/RJC.2022.1516579
- B. Schafer, M. Hecht, J. Harting and H. Nirschl, J. Colloid Interface Sci., 349, 186 (2010); https://doi.org/10.1016/j.jcis.2010.05.025
- S. Estevez-Areco, L. Guz, R. Candal and S. Goyanes, Food Hydrocoll., 108, 106054 (2020); https://doi.org/10.1016/j.foodhyd.2020.106054
- K. Charoensri, C. Rodwihok, D. Wongratanaphisan, J.A. Ko, J.S. Chung and H.J. Park, Polymers, 13, 425 (2021); https://doi.org/10.3390/polym13030425
- A. Ananth, S. Dharaneedharan, M.S. Heo and Y.S. Mok, Chem. Eng. J., 262, 179 (2015); https://doi.org/10.1016/j.cej.2014.09.083
- O. Mahapatra, M. Bhagat, C. Gopalakrishnan and K.D. Arunachalam, J. Exp. Nanosci., 3, 185 (2008); https://doi.org/10.1080/17458080802395460
- A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib and A. Memic, Int. J. Nanomedicine, 7, 6003 (2011); https://doi.org/10.2147/IJN.S35347
References
A. Ujcic, S. Krejcikova, M. Nevoralova, A. Zhigunov, J. Dybal, Z. Krulis, P. Fulin, O. Nyc and M. Slouf, Front. Mater., 7, 9 (2020); https://doi.org/10.3389/fmats.2020.00009
S. Liu, X. Li, L. Chen, L. Li, B. Li and J. Zhu, Int. J. Biol. Macromol., 104, 1330 (2017); https://doi.org/10.1016/j.ijbiomac.2017.05.174
T. Jiang, Q. Duan, J. Zhu, H. Liu and L. Yu, Adv. Ind. Eng. Polym. Res., 3, 8 (2020); https://doi.org/10.1016/j.aiepr.2019.11.003
C.I. Idumah and C.M. Obele, Surfaces Interfaces, 22, 100879 (2021); https://doi.org/10.1016/j.surfin.2020.100879
A.M. Nafchi, A.K. Alias, S. Mahmud and M. Robal, J. Food Eng., 113, 511 (2012); https://doi.org/10.1016/j.jfoodeng.2012.07.017
M.B. Gawande, A. Goswami, F.X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril and R.S. Varma, Chem. Rev., 116, 3722 (2016); https://doi.org/10.1021/acs.chemrev.5b00482
S. Saran, G. Sharma, M. Kumar and M.I. Ali, Int. J. Pharm. Sci. Res., 8, 3887 (2017); https://doi.org/10.13040/IJPSR.0975-8232.8(9).3887-92
G. Sharma, N.D. Jasuja, M. Kumar and M.I. Ali, J. Nanotechnol., 2015, 132675 (2015); https://doi.org/10.1155/2015/132675
A.K. Chatterjee, R.K. Sarkar, A.P. Chattopadhyay, R. Chakraborty, P. Aich and T. Basu, Nanotechnology, 23, 085103 (2012); https://doi.org/10.1088/0957-4484/23/8/085103
S.V.P. Ramaswamy, S. Narendhran and R. Sivaraj, Bull. Mater. Sci., 39, 361 (2016); https://doi.org/10.1007/s12034-016-1173-3
J. Chen, B. Karmakar, M.A. Salem, A.Y. Alzahrani, M.Z. Bani-Fwaz, M.M. Abdel-Daim and A.F. El-Kott, Arab. J. Chem., 15, 103681 (2022); https://doi.org/10.1016/j.arabjc.2021.103681
V.C. Verma, A. Kumar, M.G.H. Zaidi, A.K. Verma, J.P. Jaiswal, D.K. Singh, A. Singh and S. Agrawal, Int. J. Curr. Microbiol. Appl. Sci., 7, 211 (2018);
https://doi.org/10.20546/ijcmas.2018.710.022
J. Ma, W. Zhu, Y. Tian and Z. Wang, Nanoscale Res. Lett., 11, 200 (2016); https://doi.org/10.1186/s11671-016-1404-y
K. Dasila and M. Singh, S. Afr. J. Bot., 145, 177 (2022); https://doi.org/10.1016/j.sajb.2021.07.020
I. Govindaraju, G.Y. Zhuo, I. Chakraborty, S.K. Melanthota, S.S. Mal, B. Sarmah, V.J. Baruah, K.K. Mahato and N. Mazumder, Food Hydrocoll., 122, 107093 (2022); https://doi.org/10.1016/j.foodhyd.2021.107093
A. Musa, K. Hakan, K. Suuml leyman and S.K. Derya, Afr. J. Biotechnol., 10, 2867 (2011); https://doi.org/10.5897/AJB10.1567
P.V. Kowsik and N. Mazumder, Microsc. Res. Tech., 81, 1533 (2018); https://doi.org/10.1002/jemt.23160
J.M. Fang, P.A. Fowler, J. Tomkinson and C.A.S. Hill, Carbohydr, Polym., 47, 245 (2002); https://doi.org/10.1016/S0144-8617(01)00187-4
R. Kizil, J. Irudayaraj and K. Seetharaman, J. Agric. Food Chem., 50, 3912 (2002); https://doi.org/10.1021/jf011652p
A. Lopez-Rubio, J.M. Clarke, Ben Scherer, D.L. Topping and E.P. Gilbert, Food Hydrocoll., 23, 1940 (2009); https://doi.org/10.1016/j.foodhyd.2009.01.003
D. Fan, W. Ma, L. Wang, J. Huang, J. Zhao, H. Zhang and W. Chen, Stärke, 64, 598 (2012); https://doi.org/10.1002/star.201100200
A. Hebeish, M.H. El-Rafie, M.A. El-Sheikh and M.E. El-Naggar, J. Inorg. Organomet. Polym. Mater., 24, 515 (2014); https://doi.org/10.1007/s10904-013-0004-x
M. Kacurakova and M. Mathlouthi, Carbohydr. Res., 284, 145 (1996); https://doi.org/10.1016/0008-6215(95)00412-2
M. Ahmad, A. Gani, I. Hassan, Q. Huang and H. Shabbir, Sci. Rep., 10, 3533 (2020); https://doi.org/10.1038/s41598-020-60380-0
T.Y. Liu, Y. Ma, S.F. Yu, J. Shi and S. Xue, Innov. Food Sci. Emerg. Technol., 12, 586 (2011); https://doi.org/10.1016/j.ifset.2011.06.009
K. Piyada, S. Waranyou and W. Thawien, Int. Food Res. J., 20, 439 (2013).
W.-T. Yao, S.-H. Yu, Y. Zhou, J. Jiang, Q.-S. Wu, L. Zhang and J. Jiang, J. Phys. Chem. B, 109, 14011 (2005); https://doi.org/10.1021/jp0517605
J. Prasad, V. Kumar, B. Chandra and N.D. Kandpal, Rasayan J. Chem., 15, 72 (2022); https://doi.org/10.31788/RJC.2022.1516579
B. Schafer, M. Hecht, J. Harting and H. Nirschl, J. Colloid Interface Sci., 349, 186 (2010); https://doi.org/10.1016/j.jcis.2010.05.025
S. Estevez-Areco, L. Guz, R. Candal and S. Goyanes, Food Hydrocoll., 108, 106054 (2020); https://doi.org/10.1016/j.foodhyd.2020.106054
K. Charoensri, C. Rodwihok, D. Wongratanaphisan, J.A. Ko, J.S. Chung and H.J. Park, Polymers, 13, 425 (2021); https://doi.org/10.3390/polym13030425
A. Ananth, S. Dharaneedharan, M.S. Heo and Y.S. Mok, Chem. Eng. J., 262, 179 (2015); https://doi.org/10.1016/j.cej.2014.09.083
O. Mahapatra, M. Bhagat, C. Gopalakrishnan and K.D. Arunachalam, J. Exp. Nanosci., 3, 185 (2008); https://doi.org/10.1080/17458080802395460
A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib and A. Memic, Int. J. Nanomedicine, 7, 6003 (2011); https://doi.org/10.2147/IJN.S35347