This work is licensed under a Creative Commons Attribution 4.0 International License.
Applications of Nanotechnology in Agriculture and Food Science: A Review
Corresponding Author(s) : Ajay Singh
Asian Journal of Chemistry,
Vol. 35 No. 5 (2023): Vol 35 Issue 5, 2023
Abstract
Nanotechnology acquires great attentions in the last few years because of its broad applications in the medicines and drugs like tumor detection, cosmetics and materials. Nanotechnology is memorized as a growing technology because of its applications and functions due to nanoparticles’ size range between 1-100 nm. Nanomaterials are gaining popularity as an alternative to conventional pesticides, with promising results in the roles of plant growth stimulants, insecticides and fertilizers. Nanotechnology has been applied to several areas of agriculture, including crop enhancement, plant disease detection, weed and pest management, soil, water remediation, animal health and breeding, and more. Simultaneously, nanotechnology has also become increasingly significant in the food industries too. Particularly engaging for food packaging purposes are silver nanoparticles, and nanotechnology is currently being utilized to use in the food business for purposes among them processing, quality monitoring and packaging. As a result, this review concentrates on the synthesis and uses of nanoparticles in the food and agricultural industries. Despite several studies suggesting that nanoparticles have applications in the food and agriculture industries, more studies are needed to convey the significance of nanoparticles in these fields.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Ali, I. Rehman, A. Iqbal, S. Din, A.Q. Rao and A. Latif, Adv. Life Sci., 1, 129 (2014).
- C. Parisi, M. Vigani and E. Rodríguez-Cerezo, Nano Today, 10, 124 (2015); https://doi.org/10.1016/j.nantod.2014.09.009
- Y. Bhagat, K. Gangadhara, C. Rabinal, G. Chaudhari and P. Ugale, J. Pure Appl. Microbiol., 9, 737 (2015).
- M. Sharon, A.K. Choudhary and R. Kumar, J. Phytol., 2, 83 (2010).
- P. Ram, K. Vivek and S.P. Kumar, Afr. J. Biotechnol., 13, 705 (2014); https://doi.org/10.5897/AJBX2013.13554
- M. Rai and A. Ingle, Appl. Microbiol. Biotechnol., 94, 287 (2012); https://doi.org/10.1007/s00253-012-3969-4
- R. Abbasi, G. Shineh, M. Mobaraki, S. Doughty and L. Tayebi, J. Nanopart. Res., 25, 43 (2023); https://doi.org/10.1007/s11051-023-05690-w
- N. Sozer and J.L. Kokini, Trends Biotechnol., 27, 82 (2009); https://doi.org/10.1016/j.tibtech.2008.10.010
- N. Durán and P.D. Marcato, Int. J. Food Sci. Technol., 48, 1127 (2013); https://doi.org/10.1111/ijfs.12027
- M.S. Alamri, A.A.A. Qasem, A.A. Mohamed, S. Hussain, M.A. Ibraheem, G. Shamlan, H.A. Alqah and A.S. Qasha, Saudi J. Biol. Sci., 28, 4490 (2021); https://doi.org/10.1016/j.sjbs.2021.04.047
- A. Dudo, D.H. Choi and D.A. Scheufele, Appetite, 56, 78 (2011); https://doi.org/10.1016/j.appet.2010.11.143
- H. Bouwmeester, S. Dekkers, M.Y. Noordam, W.I. Hagens, A.S. Bulder, C. de Heer, S.E.C.G. ten Voorde, S.W.P. Wijnhoven, H.J.P. Marvin and A.J.A.M. Sips, Regul. Toxicol. Pharmacol., 53, 52 (2009); https://doi.org/10.1016/j.yrtph.2008.10.008
- N. Abid, A.M. Khan, S. Shujait, K. Chaudhary, M. Ikram, M. Imran, J. Haider, M. Khan, Q. Khan and M. Maqbool, Adv. Colloid Interface Sci., 300, 102597 (2022); https://doi.org/10.1016/j.cis.2021.102597
- N.T.K. Thanh, N. Maclean and S. Mahiddine, Chem. Rev., 114, 7610 (2014); https://doi.org/10.1021/cr400544s
- O.P. Siwach and P. Sen, J. Nanopart. Res., 10(S1), 107 (2008); https://doi.org/10.1007/s11051-008-9372-5
- J.E. Munoz, J. Cervantes, R. Esparza and G. Rosas, J. Nanopart. Res., 9, 945 (2007); https://doi.org/10.1007/s11051-007-9226-6
- K. Cubová and V. Cuba, Radiat. Phys. Chem., 169, 108774 (2020); https://doi.org/10.1016/j.radphyschem.2020.108774
- D.K. Avasthi and J.C. Pivin, Curr. Sci., 98, 980 (2010).
- Y. Li, Y.N. Kim, E.J. Lee, W.P. Cai and S.O. Cho, Nucl. Instrum. Methods Phys. Res. B, 251, 425 (2006); https://doi.org/10.1016/j.nimb.2006.06.019
- S.A. Khan, D.K. Avasthi, D.C. Agarwal, U.B. Singh and D. Kabiraj, Nanotechnology, 22, 235305 (2011); https://doi.org/10.1088/0957-4484/22/23/235305
- T. Kumar, S.A. Khan, U.B. Singh, S. Verma and D. Kanjilal, Appl. Surf. Sci., 258, 4148 (2012); https://doi.org/10.1016/j.apsusc.2011.07.005
- U.B. Singh, D.C. Agarwal, S.A. Khan, M. Kumar, A. Tripathi, R. Singhal, B.K. Panigrahi and D.K. Avasthi, Appl. Surf. Sci., 258, 1464 (2011); https://doi.org/10.1016/j.apsusc.2011.09.105
- M.E. Doyle and K.A. Glass, Compr. Rev. Food Sci. Food Saf., 9, 44 (2010); https://doi.org/10.1111/j.1541-4337.2009.00096.x
- A.V. Krasheninnikov and K. Nordlund, J. Appl. Phys., 107, 071301 (2010); https://doi.org/10.1063/1.3318261
- U.B. Singh, D.C. Agarwal, S.A. Khan, S. Mohapatra, A. Tripathi and D.K. Avasthi, J. Phys. D Appl. Phys., 45, 445304 (2012); https://doi.org/10.1088/0022-3727/45/44/445304
- J. Havlik, V. Petrakova, J. Kucka, H. Raabova, D. Panek, V. Stepan, Z. Zlamalova Cilova, P. Reineck, J. Stursa, J. Kucera, M. Hruby and P. Cigler, Nat. Commun., 9, 4467 (2018); https://doi.org/10.1038/s41467-018-06789-8
- J. Stursa, J. Havlik, V. Petrakova, M. Gulka, J. Ralis, V. Zach, Z. Pulec, V. Stepan, S.A. Zargaleh, M. Ledvina, M. Nesladek, F. Treussart and P. Cigler, Carbon, 96, 812 (2016); https://doi.org/10.1016/j.carbon.2015.09.111
- U.B. Singh, D.C. Agarwal, S.A. Khan, A. Tripathi, A. Kumar, R.K. Choudhury, B.K. Panigrahi and D.K. Avasthi, Radiat. Eff. Defects Solids, 166, 553 (2011); https://doi.org/10.1080/10420150.2011.572282
- S.A. Khan, S.K. Srivastava and D.K. Avasthi, J. Phys. D Appl. Phys., 45, 375304 (2012); https://doi.org/10.1088/0022-3727/45/37/375304
- M. Devi, S. Rawat and S. Sharma, Oxford Open Mater. Sci., 1, itab014 (2021); https://doi.org/10.1093/oxfmat/itab014
- M.T. Swihart, Curr. Opin. Colloid Interf. Sci., 8, 127 (2003); https://doi.org/10.1016/S1359-0294(03)00007-4
- D. Bokov, A.T. Jalil, S. Chupradit, W. Suksatan, M.J. Ansari, I.H. Shewael, G.H. Valiev and E. Kianfar, Adv. Mater. Sci. Eng., 2021, 5102014 (2021); https://doi.org/10.1155/2021/5102014
- M. Niederberger and M. Pinn, Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application, In: Engineering Materials and Processes, Springer Verlag: London (2009).
- A. Feinle, M.S. Elsaesser and N. Hüsing, Chem. Soc. Rev., 46, 3377 (2016); https://doi.org/10.1039/C5CS00710K
- C.A. Charitidis, P. Georgiou, M.A. Koklioti, A.-F. Trompeta and V. Markakis, Manufacturing Rev., 1, 11 (2014); https://doi.org/10.1051/mfreview/2014009
- G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C.-M. Han, C. Mahapatra, H.-W. Kim and J.C. Knowles, Progr. Mater. Sci., 77, 1 (2016); https://doi.org/10.1016/j.pmatsci.2015.12.001
- M. Haruta, J. New Mater. Electrochem. Syst., 7, 163 (2004).
- N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding and Z.L. Wang, Science, 316, 732 (2007); https://doi.org/10.1126/science.1140484
- R. Xu, D. Wang, J. Zhang and Y. Li, Chem. Asian J., 1, 888 (2006); https://doi.org/10.1002/asia.200600260
- I.A. Rahman and V. Padavettan, J. Nanomater., 2012, 132424 (2012); https://doi.org/10.1155/2012/132424
- N. Nandihalli, D.H. Gregory and T. Mori, Adv. Sci., 9, 2106052 (2022); https://doi.org/10.1002/advs.202106052
- M. Poienar, C. Martin, O.I. Lebedev and A. Maignan, Solid State Sci., 80, 39 (2018); https://doi.org/10.1016/j.solidstatesciences.2018.03.019
- Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen and M. Li, J. Nanomater., 2020, 8917013 (2020); https://doi.org/10.1155/2020/8917013
- M. Yoshimura and K. Byrappa, J. Mater. Sci., 43, 2085 (2008); https://doi.org/10.1007/s10853-007-1853-x
- M. Sonima, V. Mini, A. Arun and U. Reka, Nano Ex, 1, 030028 (2020); https://doi.org/10.1088/2632-959X/abc813
- B. Kullaiah, S. Ohara and A. Tadafumi, Adv. Drug Deliv. Rev., 60, 299 (2007).
- A.B. Hamidreza, B.S. Reza, C.S. Mahdi, D.Y. Mahdi, E.F. Fatemeh and F.H. Hassan, Rev. Sci. Fondam. Appl., 8, 839 (2016); https://doi.org/10.4314/jfas.8vi2s.138
- Y. Xu, V. Musumeci and C. Aymonier, J. Reaction Chem. Eng., 4, 2030 (2019); https://doi.org/10.1039/C9RE00290A
- S.D. Manjare and K. Dhingra, Mater. Sci. Energy Technol., 2, 463 (2019); https://doi.org/10.1016/j.mset.2019.04.005
- J.O. Adeyemi, A.O. Oriola, D.C. Onwudiwe and A.O. Oyedeji, Biomolecules, 12, 627 (2022); https://doi.org/10.3390/biom12050627
- H.B.H. Rahuman, R. Dhandapani, S. Narayanan, R. Paramasivam, V. Palanivel, R. Subbarayalu, S. Thangavelu and S. Muthupandian, IET Nanobiotechnol., 16, 115 (2022); https://doi.org/10.1049/nbt2.12078
- V. Soni, P. Raizada, P. Singh, H.N. Cuong, Rangabhashiyam S, A. Saini, R.V. Saini, Q.V. Le, A.K. Nadda and T.-T. Le, Environ. Res., 202, 111622 (2021); https://doi.org/10.1016/j.envres.2021.111622
- E. Priyadarshini, S.S. Priyadarshini and N. Pradhan, Appl. Microbiol. Biotechnol., 103, 3297 (2019); https://doi.org/10.1007/s00253-019-09685-3
- S. Jadoun, R. Arif, N.K. Jangid and R.K. Meena, Environ. Chem. Lett., 19, 355 (2021); https://doi.org/10.1007/s10311-020-01074-x
- R. Rajkumar, G. Ezhumalai and M. Gnanadesigan, Environ. Technol. Innov., 21, 101282 (2021); https://doi.org/10.1016/j.eti.2020.101282
- D. Chugh, V.S. Viswamalya and B. Das, J. Genet. Eng. Biotechnol., 19, 126 (2021); https://doi.org/10.1186/s43141-021-00228-w
- A. Gogos, K. Knauer and T.D. Bucheli, J. Agric. Food Chem., 60, 9781 (2012); https://doi.org/10.1021/jf302154y
- M. Fan, J. Shen, L. Yuan, R. Jiang, X. Chen, W.J. Davies and F. Zhang, J. Exp. Bot., 63, 13 (2012); https://doi.org/10.1093/jxb/err248
- R.H. Taheri, M.S. Miah, M.G. Rabbani and M.A. Rahim, Eur. J. Agric. Food Sci., 2, 1 (2020); https://doi.org/10.24018/ejfood.2020.2.4.96
- M.S. Miah, R.H. Taheri, M.G. Rabbani and M.R. Karim, Int. J. Biosci., 17, 126 (2020); http://dx.doi.org/10.12692/ijb/17.4.126-133
- P.K. Mani and S. Mondal, Agri-nano Techniques for Plant Availability of Nutrients, In: Plant Nanotechnology. Springer, Cham, pp. 263-303 (2016).
- H. Chhipa, Environ. Chem. Lett., 15, 15 (2017); https://doi.org/10.1007/s10311-016-0600-4
- I.R. Khot, S. Sankaran, J.M. Maja, R. Ehsani and E.W. Schuster, Crop Prot., 35, 64 (2012); https://doi.org/10.1016/j.cropro.2012.01.007
- R. Liu and R. Lal, Sci. Total Environ., 514, 131 (2015); https://doi.org/10.1016/j.scitotenv.2015.01.104
- J.S. Vander-Gheynst, H. Scher and H.-Y. Guo, Ind. Biotechnol., 2, 213 (2006); http://doi.org/10.1089/ind.2006.2.213
- S.K. Shukla, R. Kumar, R.K. Mishra, A. Pandey, A. Pathak, M.G.H. Zaidi, S.K. Srivastava and A. Dikshit, Nanotechnol. Rev., 4, 439 (2015); https://doi.org/10.1515/ntrev-2015-0036
- X. Zhao, H. Cui, Y. Wang, C. Sun, B. Cui and Z. Zeng, J. Agric. Food Chem., 66, 6504 (2018); https://doi.org/10.1021/acs.jafc.7b02004
- Y. Tong, Y. Wu, C. Zhao, Y. Xu, J. Lu, S. Xiang, F. Zong and X. Wu, J. Agric. Food Chem., 65, 7371 (2017); https://doi.org/10.1021/acs.jafc.7b02197
- B. Deka, A. Babu, C. Baruah and M. Barthakur, Front. Nutr., 8, 686131 (2021); https://doi.org/10.3389/fnut.2021.686131
- R. Sheykhbaglou, M. Sedghi, M.T. Shishevan and R.S. Sharifi, Not. Sci. Biol., 2, 112 (2010); https://doi.org/10.15835/nsb224667
- N. Scott and H. Chen, Ind. Biotechnol., 9, 17 (2013); https://doi.org/10.1089/ind.2013.1555
- I.X. Yin, J. Zhang, I.S. Zhao, M.L. Mei, Q. Li and C.H. Chu, Int. J. Nanomed., 15, 2555 (2020); https://doi.org/10.2147/IJN.S246764
- V. Pareek, R. Gupta and J. Panwar, Mater. Sci. Eng. C Mater. Biol. Appl., 90, 739 (2018); https://doi.org/10.1016/j.msec.2018.04.093
- K. Zheng, M.I. Setyawati, D.T. Leong and J Xie, Coord. Chem. Rev., 357, 1 (2018); https://doi.org/10.1016/j.ccr.2017.11.019
- M. Soltani Nejad, G.H.S. Bonjar, M. Khatami, A. Amini and S. Aghighi, IET Nanobiotechnol., 11, 236 (2016); https://doi.org/10.1049/iet-nbt.2015.0121
- A. Sidhu, H. Barmota and A. Bala, Appl. Nanosci., 7, 681 (2017); https://doi.org/10.1007/s13204-017-0606-7
- S. Gaba, A.K. Rai, A. Varma, R. Prasad and A. Goel, Front. Chem., 10, 966396 (2022); https://doi.org/10.3389/fchem.2022.966396
- Q.B. Ngo, T.H. Dao, H.C. Nguyen, X.T. Tran, T.V. Nguyen, T.D. Khuu and T.H. Huynh, Adv. Nat. Sci.: Nanosci. Nanotechnol., 5, 015016 (2014); https://doi.org/10.1088/2043-6262/5/1/015016
- F. Asghari, Z. Jahanshiri, M. Imani, M. Shams-Ghahfarokhi and M. Razzaghi-Abyaneh, Eds.: A.M. Grumezescu, Antifungal Nanomaterials: Synthesis, Properties and Applications, In: Nano-biomaterials in Antimicrobial Therapy, Elsevier: Amsterdam, pp. 343-383 (2016).
- P. Bardos, C. Merly, P. Kvapil and H.-P. Koschitzky, Rem. J., 28, 43 (2018); https://doi.org/10.1002/rem.21559
- Y.S. Kim, N.H. Ahmad Raston and M. Bock Gu, Biosens. Bioelectron., 76, 2 (2016); https://doi.org/10.1016/j.bios.2015.06.040
- S. Cicek and H. Nadaroglu, Adv. Nano Res., 3, 207 (2015); https://doi.org/10.12989/anr.2015.3.4.207
- V. Rai, S. Acharya and N. Dey, J. Biomater. Nanobiotechnol., 3, 315 (2012); https://doi.org/10.4236/jbnb.2012.322039
- S. Baruah and J. Dutta, Environ. Chem. Lett., 7, 191 (2009); https://doi.org/10.1007/s10311-009-0228-8
- D. Erickson, S. Mandal, A.H.J. Yang and B. Cordovez, Microfluid. Nanofluidics, 4, 33 (2008); https://doi.org/10.1007/s10404-007-0198-8
- S.-Y. Kwak, M.H. Wong, T.T.S. Lew, G. Bisker, M.A. Lee, A. Kaplan, J. Dong, A.T. Liu, V.B. Koman, R. Sinclair, C. Hamann and M.S. Strano, Annu. Rev. Anal. Chem., 10, 113 (2017); https://doi.org/10.1146/annurev-anchem-061516-045310
- J.A.T. da Silva, D.T. Nhut, M. Tanaka and S. Fukai, Scientia Horticult., 97, 397 (2003); https://doi.org/10.1016/S0304-4238(02)00219-4
- M.K. Sarmast and H. Salehi, Mol. Biotechnol., 58, 441 (2016); https://doi.org/10.1007/s12033-016-9943-0
- N. Dasgupta, S. Ranjan and C. Ramalingam, Environ. Chem. Lett., 15, 591 (2017); https://doi.org/10.1007/s10311-017-0648-9
- H.K. Dhingra, P.N. Jha and M.P. Bajpai, Current Topics in Biotechnology and Microbiology, Lambert Academic Publishing, Saarbrücken (2011).
- M.F. Serag, N. Kaji, S. Habuchi, A. Bianco and Y. Baba, RSC Adv., 3, 4856 (2013); https://doi.org/10.1039/c2ra22766e
- Y-H. Lee, B. Wu, W.-Q. Zhuang, D.-R. Chen and Y.J. Tang, J. Microbiol. Methods, 84, 228 (2011); https://doi.org/10.1016/j.mimet.2010.11.022
- Q. Liu, B. Chen, Q. Wang, X. Shi, Z. Xiao, J. Lin and X. Fang, Nano Lett., 9, 1007 (2009); https://doi.org/10.1021/nl803083u
- C. Vijayalakshmi, C. Chellaram and S.L. Kumar, Biosci. Biotechnol. Res. Asia, 12, 327 (2015); https://doi.org/10.13005/bbra/1669
- F. Torney, B.G. Trewyn, V.S.-Y. Lin and K. Wang, Nat. Nanotechnol., 2, 295 (2007); https://doi.org/10.1038/nnano.2007.108
- T. Sone, E. Nagamori, T. Ikeuchi, A. Mizukami, Y. Takakura, S. Kajiyama, E. Fukusaki, S. Harashima, A. Kobayashi and K. Fukui, J. Biosci. Bioeng., 94, 87 (2002); https://doi.org/10.1016/S1389-1723(02)80123-2
- M.L. Flores-Lopez, M.A. Cerqueira, D.J. de Rodriguez and A.A. Vicente, Food Eng. Rev., 8, 292 (2016); https://doi.org/10.1007/s12393-015-9135-x
- O.L. Ramos, R.N. Pereira, R. Rodrigues, J.A. Teixeira, A.A. Vicente and F. Xavier Malcata, Food Res. Int., 66, 344 (2014); https://doi.org/10.1016/j.foodres.2014.09.036
- A.N. Misra, M. Misra and R. Singh, Int. J. Pure Appl. Sci. Technol., 16, 1 (2013).
- S.C. Shit and P.M. Shah, J. Polym., 2014, 427259 (2014); https://doi.org/10.1155/2014/427259
- Q. Chaudhry and L. Castle, Trends Food Sci. Technol., 22, 595 (2011); https://doi.org/10.1016/j.tifs.2011.01.001
- D.J. McClements, J. Food Sci., 75, R30 (2010); https://doi.org/10.1111/j.1750-3841.2009.01452.x
- B.A. Magnuson, T.S. Jonaitis and J.W. Card, J. Food Sci., 76, R126 (2011); https://doi.org/10.1111/j.1750-3841.2011.02170.x
- S. Sun, V. Sidhu, Y. Rong and Y. Zheng, Curr. Pollut. Rep., 4, 240 (2018); https://doi.org/10.1007/s40726-018-0092-x
- H.I. Gomes, G. Fan, E.P. Mateus, C. Dias-Ferreira and A.B. Ribeiro, Sci. Total Environ., 493, 178 (2014); https://doi.org/10.1016/j.scitotenv.2014.05.112
- M. Gil-Díaz, S. Diez-Pascual, A. González, J. Alonso, E. Rodriguez-Valdes, J.R. Gallego and M.C. Lobo, Chemosphere, 149, 137 (2016); https://doi.org/10.1016/j.chemosphere.2016.01.106
- N.C. Mueller and B. Nowack, Elements, 6, 395 (2010); https://doi.org/10.2113/gselements.6.6.395
- A.S. Adeleye, A.A. Keller, R.J. Miller and H.S. Lenihan, J. Nanopart. Res., 15, 1418 (2013); https://doi.org/10.1007/s11051-013-1418-7
- E. Maine, V.J. Thomas, M. Bliemel, A. Murira and J. Utterback, Nat. Nanotechnol., 9, 2 (2014); https://doi.org/10.1038/nnano.2013.288
- H. Onyeaka, P. Passaretti, T. Miri and Z.T. Al-Sharify, Curr. Res. Food Sci., 5, 763 (2022); https://doi.org/10.1016/j.crfs.2022.04.005
- K. Donaldson, V. Stone, C.L. Tran, W. Kreyling and P.J. Borm, Occup. Environ. Med., 61, 727 (2004); https://doi.org/10.1136/oem.2004.013243
- T. Singh, S. Shukla, P. Kumar, V. Wahla, V.K. Bajpai and I.A. Rather, Front. Microbiol., 8, 1501 (2017); https://doi.org/10.3389/fmicb.2017.01501
- C. Ruiz-Capillas and A.M. Herrero, Foods, 10, 582 (2021); https://doi.org/10.3390/foods10030582
- P.N. Ezhilarasi, P. Karthik, N. Chhanwal and C. Anandharamakrishnan, Food Bioprocess Technol., 6, 628 (2013); https://doi.org/10.1007/s11947-012-0944-0
- H. Chen, J.N. Seiber and M. Hotze, J. Agric. Food Chem., 62, 1209 (2014); https://doi.org/10.1021/jf5002588
- A. Prakash, S. Sen and R. Dixit, Int. J. Pharm. Sci. Rev. Res., 22, 107 (2013).
- Q. Chaudhry, M. Scotter, J. Blackburn, B. Ross, A. Boxall, L. Castle, R. Aitken and R. Watkins, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 25, 241 (2008); https://doi.org/10.1080/02652030701744538
- S. Neethirajan and D.S. Jayas, Food Bioprocess Technol., 4, 39 (2011); https://doi.org/10.1007/s11947-010-0328-2
- S. Bhattacharjee, E.J. van Opstal, G.M. Alink, A.T. Marcelis, H. Zuilhof and I.M. Rietjens, J. Nanopart. Res., 15, 1695 (2013); https://doi.org/10.1007/s11051-013-1695-1
- K. Oehlke, M. Adamiuk, D. Behsnilian, D.V. Graf, E. Mayer-Miebach, E. Walz and R. Greiner, Food Funct., 5, 1341 (2014); https://doi.org/10.1039/c3fo60067j
- N. Sozer and J.L. Kokini, Trends Biotechnol., 27, 82 (2009); https://doi.org/10.1016/j.tibtech.2008.10.010
- K.I. Popov, A.N. Filippov and S.A. Khurshudyan, Russ. J. Gen. Chem., 80, 630 (2010); https://doi.org/10.1134/S1070363210030436
- D. Coles and L.J. Frewer, Trends Food Sci. Technol., 34, 32 (2013); https://doi.org/10.1016/j.tifs.2013.08.006
- F.J. Gutierrez, M.L. Mussons, P. Gaton, R. Rojo and B. Valdez, Nanotechnology and Food Industry, In: Scientific, Health and Social Aspects of the Food Industry, Rijeka, InTech, p. 488 (2012).
- H.J. Park, S.H. Kim, H.J. Kim and S.H. Choi, Plant Pathol. J., 22, 295 (2006); https://doi.org/10.5423/PPJ.2006.22.3.295
- T.V. Duncan, J. Colloid Interface Sci., 363, 1 (2011); https://doi.org/10.1016/j.jcis.2011.07.017
- M. Cushen, J. Kerry, M. Morris, M. Cruz-Romero and E. Cummins, Trends Food Sci. Technol., 24, 30 (2012); https://doi.org/10.1016/j.tifs.2011.10.006
- N. Gandhi, S. Khurana, R. Mathur, U. Bansal and R. Nair, Asian J. Chem., 34, 2499 (2022); https://doi.org/10.14233/ajchem.2022.23917
- S.S.H. Rizvi, C.I. Moraru, H. Bouwmeester and F.W.H. Kampers, Eds.: C.E. Boisrobert and A. Stjepanovic, Ensuring Global Food Safety, In: Nanotechnology and Food Safety, Elsevier, pp. 263-280 (2010).
- C. Silvestre, D. Duraccio and S. Cimmino, Prog. Polym. Sci., 36, 1766 (2011); https://doi.org/10.1016/j.progpolymsci.2011.02.003
- B.S. Sekhon, J. Nanotechnol. Sci. Appl., 3, 1 (2010).
- A. Sorrentino, G. Gorrasi and V. Vittoria, Trends Food Sci. Technol., 18, 84 (2007); https://doi.org/10.1016/j.tifs.2006.09.004
- M. Imran, A.-M. Revol-Junelles, A. Martyn, E.A. Tehrany, M. Jacquot, M. Linder and S. Desobry, Crit. Rev. Food Sci. Nutr., 50, 799 (2010); https://doi.org/10.1080/10408398.2010.503694
- K.B. Biji, C.N. Ravishankar, C.O. Mohan and T.K. Srinivasa Gopal, J. Food Sci. Technol., 52, 6125 (2015); https://doi.org/10.1007/s13197-015-1766-7
- J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez and M.J. Yacaman, Nanotechnology, 16, 2346 (2005); https://doi.org/10.1088/0957-4484/16/10/059
- T. Ghosh, G.V.S. Bhagya Raj and K.K. Dash, Measurement: Food, 7, 100049 (2022); https://doi.org/10.1016/j.meafoo.2022.100049
- Y. Xing,W. Li, Q. Wang, X. Li, Q. Xu, X. Guo, X. Bi, X. Liu, Y. Shui, H. Lin and H. Yang, Molecules, 24, 1695 (2019); https://doi.org/10.3390/molecules24091695
- B.L. Reddy, H.S. Jatav, V.D. Rajput, T. Minkina, A. Harikrishnan, V.K. Veena, A. Ranjan, A. Chauhan, S. Kumar, A. Prakash and R. Prasad, J. Nanomater., 2022, 9543532 (2022); https://doi.org/10.1155/2022/9543532
- V. Templier, T. Livache, S. Boisset, M. Maurin, S. Slimani, R. Mathey and Y. Roupioz, Sci. Rep., 7, 9457 (2017); https://doi.org/10.1038/s41598-017-10072-z
- K.S. Hwang, S.-M. Lee, S.K. Kim, J.H. Lee and T.S. Kim, Ann. Rev. Anal. Chem., 2, 77 (2009); https://doi.org/10.1146/annurev-anchem-060908-155232
- D. Branton, D.W Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M.D. Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krstic, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin and J.A. Schloss, Nat. Biotechnol., 26, 1146 (2009); https://doi.org/10.1038/nbt.1495
- K. Wu, R. Saha, D. Su, V.D. Krishna, J. Liu, M.C.-J. Cheeran and J.-P. Wang, ACS Appl. Nano Mater., 3, 9560 (2020); https://doi.org/10.1021/acsanm.0c02048
- G. Sabarees, V. Velmurugan, G.P. Tamilarasi, V. Alagarsamy and V.R. Solomon, Polymers, 14, 3994 (2022); https://doi.org/10.3390/polym14193994
- A.H. Havelaar, M.D. Kirk, P.R. Torgerson, H.J. Gibb, T. Hald, R.J. Lake, N. Praet, D.C. Bellinger, N.R. de Silva, N. Gargouri, N. Speybroeck, A. Cawthorne, C. Mathers, C. Stein, F.J. Angulo and B. Devleesschauwer, PLoS Med., 12, e1001923 (2015); https://doi.org/10.1371/journal.pmed.1001923
- V.K. Bajpai, M. Kamle, S. Shukla, D.K. Mahato, P. Chandra, S.K. Hwang, P. Kumar, Y.S. Huh and Y.-K. Han, J. Food Drug Anal., 26, 1201 (2018); https://doi.org/10.1016/j.jfda.2018.06.011
- S. Garcia-Pinilla, Nanotechnology in Food Processing. In: Advances in Processing Technologies for Bio-based Nanosystems in Food, CRC Press: Boca Raton, pp. 259-276 (2019).
- B. Perez-Lopez and A. Merkoçi, Trends Food Sci. Technol., 22, 625 (2011); https://doi.org/10.1016/j.tifs.2011.04.001
- J. Baio, L. Wiggins, D.L. Christensen, M.J. Maenner, J. Daniels, Z. Warren, M. Kurzius-Spencer, W. Zahorodny, C.R. Rosenberg, T. White, M.S. Durkin, P. Imm, L. Nikolaou, M. Yeargin-Allsopp, L.-C. Lee, R. Harrington, M. Lopez, R.T. Fitzgerald, A. Hewitt, S. Pettygrove, J.N. Constantino, A. Vehorn, J. Shenouda, J. Hall-Lande, K.V. Naarden Braun and N.F. Dowling, MMWR Surveill. Summ., 67, 1 (2018).
- Centers for Disease Control and Prevention (CDC), Surveillance for Foodborne Disease Outbreaks, United States, Annual Report. Atlanta: US Department of Health and Human Services, CDC (2015).
- A. Kumar, A. Pratush and S. Bera, Significance of Nanoscience in Food Microbiology: Current Trend and Prospects. In: Nanotechnology for Advances in Medical Microbiology, Springer: Singapore, pp. 249-267 (2021).
- N.F. Nasr, Int. J. Curr. Microbiol. Appl. Sci., 4, 846 (2015).
- K. El-Boubbou, C. Gruden and X. Huang, J. Am. Chem. Soc., 129, 13392 (2007); https://doi.org/10.1021/ja076086e
- M. Eleftheriadou, G. Pyrgiotakis and P. Demokritou, Curr. Opin., 44, 87 (2017).
- A.M. Grumezescu and A.M. Holban, Impact of Nanoscience in the Food Industry, Academic Press: London, vol. 12 (2018).
- C.H. Kaya and K. Mallikarjunan, Food Eng. Rev., 4, 114 (2012).
- V. Krishna, S. Pumprueg, S.-H. Lee, J. Zhao, W. Sigmund, B. Koopman and B.M. Moudgil, Process Safety Environ. Prot., 83, 393 (2005); https://doi.org/10.1205/psep.04387
- A.J. Kora and L. Rastogi, Bioinorg. Chem. Appl., 2013, 871097 (2013); https://doi.org/10.1155/2013/871097
- A. Nair, R. Mallya, V. Suvarna, T.A. Khan, M. Momin and A. Omri, Antibiotics, 11, 108 (2022); https://doi.org/10.3390/antibiotics11010108
- C. Gomes, R.G. Moreira and E. Castell-Perez, J. Food Sci., 76, N16 (2011); https://doi.org/10.1111/j.1750-3841.2010.01985.x
- H.H. Khalaf, A.M. Sharoba, H.H. El-Tanahi and M.K. Morsy, J. Food Dairy Sci., 4, 557 (2013); https://doi.org/10.21608/JFDS.2013.72104
- T. Begum, P.A. Follett, J. Mahmud, L. Moskovchenko, S. Salmieri, Z. Allahdad and M. Lacroix, Microbial Pathogenesis, 164, 105411 (2022); https://doi.org/10.1016/j.micpath.2022.105411
- S.H. Nile, V. Baskar, D. Selvaraj, A. Nile, J. Xiao and G. Kai, Nano-Micro Lett., 12, 45 (2020); https://doi.org/10.1007/s40820-020-0383-9
- V. Krishna, S. Pumprueg, S.H. Lee, J. Zhao, W. Sigmund, B. Koopman and B.M. Moudgil, Process Saf. Environ. Prot., 83, 393 (2005); https://doi.org/10.1205/psep.04387
- K.H. Cho, J.E. Park, T. Osaka and S.G. Park, Electrochim. Acta, 51, 956 (2005); https://doi.org/10.1016/j.electacta.2005.04.071
- C. Gomes Silva, R. Juárez, T. Marino, R. Molinari and H. García, J. Am. Chem. Soc., 133, 595 (2011); https://doi.org/10.1021/ja1086358
- M.K. Morsy, H.H. Khalaf, A.M. Sharoba, H.H. Eltanahi and C.N. Cutter, J. Food Sci., 79, M675 (2014); https://doi.org/10.1111/1750-3841.12400
- K. Myszka and K. Czaczyk, Pol. J. Food Nutr. Sci., 61, 173 (2011); https://doi.org/10.2478/v10222-011-0018-4
- L.C. Giannossa, D. Longano, N. Ditaranto, M.A. Nitti, F. Paladini, M. Pollini, M. Rai, A. Sannino, A. Valentini and N. Cioffi, Nanotech. Rev., 2, 307 (2013); https://doi.org/10.1515/ntrev-2013-0004
- A. Calle, M. Fernandez, B. Montoya, M. Schmidt and J. Thompson, Foods. 10, 1459 (2021); https://doi.org/10.3390/foods10071459
- A. Das, M. Raffi, C. Megaridis, D. Fragouli, C. Innocenti and A. Athanassiou, J. Nanopart. Res., 17, 1 (2015); https://doi.org/10.1007/s11051-014-2856-6
- C. Colica, V. Aiello, L. Boccuto, N. Kobyliak, M.C. Strongoli, I. Vecchio and L. Abenavoli, Minerva Biotechnol., 30, 69 (2018); https://doi.org/10.23736/S1120-4826.18.02394-7
- M.M. Berekaa, Int. J. Curr. Microbiol. Appl. Sci., 4, 345 (2015).
- E.L. Bradley, L. Castle and Q. Chaudhry, Trends Food Sci. Technol., 22, 604 (2011); https://doi.org/10.1016/j.tifs.2011.01.002
- K. Arshak, C. Adley, E. Moore, C. Cunniffe, M. Campion and J. Harris, Sens. Actuators B Chem., 126, 226 (2007); https://doi.org/10.1016/j.snb.2006.12.006
- S.R. Horner, C.R. Mace, L.J. Rothberg and B.L. Miller, Biosens. Bioelectron., 21, 1659 (2006); https://doi.org/10.1016/j.bios.2005.07.019
- N JonesB RayK T RanjitA C Manna. N. Jones, B. Ray, K.T. Ranjit and A.C. Manna, FEMS Microbiol. Lett., 279, 71 (2008); https://doi.org/10.1111/j.1574-6968.2007.01012.x
- S. Kang, M. Pinault, L.D. Pfefferle and M. Elimelech, Langmuir, 23, 8670 (2007); https://doi.org/10.1021/la701067r
- R. Prasad, A. Bhattacharyya and Q.D. Nguyen, Front Microbiol., 8, 1014 (2017); https://doi.org/10.3389/fmicb.2017.01014
- S.K. Biswal, Int. J. Sci. Innov. Discov., 2, 21 (2012).
- J. Flanagan and H. Singh, Crit. Rev. Food Sci. Nutr., 46, 221 (2006); https://doi.org/10.1080/10408690590956710
- A. Thirumurugan, S. Ramachandran and G.A. Shiamala, Int. Food Res. J., 20, 1909 (2013).
- D. Davis, X. Guo, L. Musavi, C.S. Lin, S.H. Chen and V.C.H. Wu, Ind. Biotechnol., 9, 31 (2013); https://doi.org/10.1089/ind.2012.0033
- L. Yotova, S. Yaneva and D. Marinkova, J. Chem. Technol. Metall., 48, 215 (2013).
- S. Yadav, G.K. Mehrotra and P.K. Dutta, Food Chem., 334, 127605 (2021); https://doi.org/10.1016/j.foodchem.2020.127605
- X. Zhang, G. Xiao, Y. Wang, Y. Zhao, H. Su and T. Tan, Carbohydr. Polym., 169, 101 (2017); https://doi.org/10.1016/j.carbpol.2017.03.073
- R. Gu, H. Yun, L. Chen, Q. Wang and X. Huang, ACS Appl. Bio Mater., 3, 602 (2020); https://doi.org/10.1021/acsabm.9b00992
- A. Jain, R. Shivendu, D. Nandita and R. Chidambaram, Crit. Rev. Food Sci. Nutr., 58, 297 (2016); https://doi.org/10.1080/10408398.2016.1160363
- K. Savolainen, L. Pylkkanen, H. Norppa, G. Falck, H. Lindberg, T. Tuomi, M. Vippola, H. Alenius, K. Hämeri, J. Koivisto, D. Brouwer, D. Mark, D. Bard, M. Berges, E. Jankowska, M. Posniak, P. Farmer, R. Singh, F. Krombach, P. Bihari, G. Kasper and M. Seipenbusch, Saf. Sci., 48, 957 (2010); https://doi.org/10.1016/j.ssci.2010.03.006
- J. Athinarayanan, V.S. Periasamy, M.A. Alsaif, A.A. Al-Warthan and A.A. Alshatwi, Cell Biol. Toxicol., 30, 89 (2014); https://doi.org/10.1007/s10565-014-9271-8
- M. Cushen, J. Kerry, M. Morris, M. Cruz-Romero and E. Cummins, J. Agric. Food Chem., 62, 1403 (2014); https://doi.org/10.1021/jf404038y
- G.J. Mahler, M.B. Esch, E. Tako, T.L. Southard, S.D. Archer, R.P. Glahn and M.L. Shuler, Nat. Nanotechnol., 7, 264 (2012); https://doi.org/10.1038/nnano.2012.3
- D.J. Bennett and D. Schuurbiers, NSTI Nanotech., 2, 765 (2005).
- V. Amenta, K. Aschberger, M. Arena, H. Bouwmeester, F.B. Moniz, P. Brandhoff, S. Gottardo, H.J.P. Marvin, A. Mech, L.Q. Pesudo, H. Rauscher, R. Schoonjans, M.V. Vettori, S. Weigel and R.J. Peters, Regul. Toxicol. Pharmacol., 73, 463 (2015); https://doi.org/10.1016/j.yrtph.2015.06.016
References
M.A. Ali, I. Rehman, A. Iqbal, S. Din, A.Q. Rao and A. Latif, Adv. Life Sci., 1, 129 (2014).
C. Parisi, M. Vigani and E. Rodríguez-Cerezo, Nano Today, 10, 124 (2015); https://doi.org/10.1016/j.nantod.2014.09.009
Y. Bhagat, K. Gangadhara, C. Rabinal, G. Chaudhari and P. Ugale, J. Pure Appl. Microbiol., 9, 737 (2015).
M. Sharon, A.K. Choudhary and R. Kumar, J. Phytol., 2, 83 (2010).
P. Ram, K. Vivek and S.P. Kumar, Afr. J. Biotechnol., 13, 705 (2014); https://doi.org/10.5897/AJBX2013.13554
M. Rai and A. Ingle, Appl. Microbiol. Biotechnol., 94, 287 (2012); https://doi.org/10.1007/s00253-012-3969-4
R. Abbasi, G. Shineh, M. Mobaraki, S. Doughty and L. Tayebi, J. Nanopart. Res., 25, 43 (2023); https://doi.org/10.1007/s11051-023-05690-w
N. Sozer and J.L. Kokini, Trends Biotechnol., 27, 82 (2009); https://doi.org/10.1016/j.tibtech.2008.10.010
N. Durán and P.D. Marcato, Int. J. Food Sci. Technol., 48, 1127 (2013); https://doi.org/10.1111/ijfs.12027
M.S. Alamri, A.A.A. Qasem, A.A. Mohamed, S. Hussain, M.A. Ibraheem, G. Shamlan, H.A. Alqah and A.S. Qasha, Saudi J. Biol. Sci., 28, 4490 (2021); https://doi.org/10.1016/j.sjbs.2021.04.047
A. Dudo, D.H. Choi and D.A. Scheufele, Appetite, 56, 78 (2011); https://doi.org/10.1016/j.appet.2010.11.143
H. Bouwmeester, S. Dekkers, M.Y. Noordam, W.I. Hagens, A.S. Bulder, C. de Heer, S.E.C.G. ten Voorde, S.W.P. Wijnhoven, H.J.P. Marvin and A.J.A.M. Sips, Regul. Toxicol. Pharmacol., 53, 52 (2009); https://doi.org/10.1016/j.yrtph.2008.10.008
N. Abid, A.M. Khan, S. Shujait, K. Chaudhary, M. Ikram, M. Imran, J. Haider, M. Khan, Q. Khan and M. Maqbool, Adv. Colloid Interface Sci., 300, 102597 (2022); https://doi.org/10.1016/j.cis.2021.102597
N.T.K. Thanh, N. Maclean and S. Mahiddine, Chem. Rev., 114, 7610 (2014); https://doi.org/10.1021/cr400544s
O.P. Siwach and P. Sen, J. Nanopart. Res., 10(S1), 107 (2008); https://doi.org/10.1007/s11051-008-9372-5
J.E. Munoz, J. Cervantes, R. Esparza and G. Rosas, J. Nanopart. Res., 9, 945 (2007); https://doi.org/10.1007/s11051-007-9226-6
K. Cubová and V. Cuba, Radiat. Phys. Chem., 169, 108774 (2020); https://doi.org/10.1016/j.radphyschem.2020.108774
D.K. Avasthi and J.C. Pivin, Curr. Sci., 98, 980 (2010).
Y. Li, Y.N. Kim, E.J. Lee, W.P. Cai and S.O. Cho, Nucl. Instrum. Methods Phys. Res. B, 251, 425 (2006); https://doi.org/10.1016/j.nimb.2006.06.019
S.A. Khan, D.K. Avasthi, D.C. Agarwal, U.B. Singh and D. Kabiraj, Nanotechnology, 22, 235305 (2011); https://doi.org/10.1088/0957-4484/22/23/235305
T. Kumar, S.A. Khan, U.B. Singh, S. Verma and D. Kanjilal, Appl. Surf. Sci., 258, 4148 (2012); https://doi.org/10.1016/j.apsusc.2011.07.005
U.B. Singh, D.C. Agarwal, S.A. Khan, M. Kumar, A. Tripathi, R. Singhal, B.K. Panigrahi and D.K. Avasthi, Appl. Surf. Sci., 258, 1464 (2011); https://doi.org/10.1016/j.apsusc.2011.09.105
M.E. Doyle and K.A. Glass, Compr. Rev. Food Sci. Food Saf., 9, 44 (2010); https://doi.org/10.1111/j.1541-4337.2009.00096.x
A.V. Krasheninnikov and K. Nordlund, J. Appl. Phys., 107, 071301 (2010); https://doi.org/10.1063/1.3318261
U.B. Singh, D.C. Agarwal, S.A. Khan, S. Mohapatra, A. Tripathi and D.K. Avasthi, J. Phys. D Appl. Phys., 45, 445304 (2012); https://doi.org/10.1088/0022-3727/45/44/445304
J. Havlik, V. Petrakova, J. Kucka, H. Raabova, D. Panek, V. Stepan, Z. Zlamalova Cilova, P. Reineck, J. Stursa, J. Kucera, M. Hruby and P. Cigler, Nat. Commun., 9, 4467 (2018); https://doi.org/10.1038/s41467-018-06789-8
J. Stursa, J. Havlik, V. Petrakova, M. Gulka, J. Ralis, V. Zach, Z. Pulec, V. Stepan, S.A. Zargaleh, M. Ledvina, M. Nesladek, F. Treussart and P. Cigler, Carbon, 96, 812 (2016); https://doi.org/10.1016/j.carbon.2015.09.111
U.B. Singh, D.C. Agarwal, S.A. Khan, A. Tripathi, A. Kumar, R.K. Choudhury, B.K. Panigrahi and D.K. Avasthi, Radiat. Eff. Defects Solids, 166, 553 (2011); https://doi.org/10.1080/10420150.2011.572282
S.A. Khan, S.K. Srivastava and D.K. Avasthi, J. Phys. D Appl. Phys., 45, 375304 (2012); https://doi.org/10.1088/0022-3727/45/37/375304
M. Devi, S. Rawat and S. Sharma, Oxford Open Mater. Sci., 1, itab014 (2021); https://doi.org/10.1093/oxfmat/itab014
M.T. Swihart, Curr. Opin. Colloid Interf. Sci., 8, 127 (2003); https://doi.org/10.1016/S1359-0294(03)00007-4
D. Bokov, A.T. Jalil, S. Chupradit, W. Suksatan, M.J. Ansari, I.H. Shewael, G.H. Valiev and E. Kianfar, Adv. Mater. Sci. Eng., 2021, 5102014 (2021); https://doi.org/10.1155/2021/5102014
M. Niederberger and M. Pinn, Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application, In: Engineering Materials and Processes, Springer Verlag: London (2009).
A. Feinle, M.S. Elsaesser and N. Hüsing, Chem. Soc. Rev., 46, 3377 (2016); https://doi.org/10.1039/C5CS00710K
C.A. Charitidis, P. Georgiou, M.A. Koklioti, A.-F. Trompeta and V. Markakis, Manufacturing Rev., 1, 11 (2014); https://doi.org/10.1051/mfreview/2014009
G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C.-M. Han, C. Mahapatra, H.-W. Kim and J.C. Knowles, Progr. Mater. Sci., 77, 1 (2016); https://doi.org/10.1016/j.pmatsci.2015.12.001
M. Haruta, J. New Mater. Electrochem. Syst., 7, 163 (2004).
N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding and Z.L. Wang, Science, 316, 732 (2007); https://doi.org/10.1126/science.1140484
R. Xu, D. Wang, J. Zhang and Y. Li, Chem. Asian J., 1, 888 (2006); https://doi.org/10.1002/asia.200600260
I.A. Rahman and V. Padavettan, J. Nanomater., 2012, 132424 (2012); https://doi.org/10.1155/2012/132424
N. Nandihalli, D.H. Gregory and T. Mori, Adv. Sci., 9, 2106052 (2022); https://doi.org/10.1002/advs.202106052
M. Poienar, C. Martin, O.I. Lebedev and A. Maignan, Solid State Sci., 80, 39 (2018); https://doi.org/10.1016/j.solidstatesciences.2018.03.019
Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen and M. Li, J. Nanomater., 2020, 8917013 (2020); https://doi.org/10.1155/2020/8917013
M. Yoshimura and K. Byrappa, J. Mater. Sci., 43, 2085 (2008); https://doi.org/10.1007/s10853-007-1853-x
M. Sonima, V. Mini, A. Arun and U. Reka, Nano Ex, 1, 030028 (2020); https://doi.org/10.1088/2632-959X/abc813
B. Kullaiah, S. Ohara and A. Tadafumi, Adv. Drug Deliv. Rev., 60, 299 (2007).
A.B. Hamidreza, B.S. Reza, C.S. Mahdi, D.Y. Mahdi, E.F. Fatemeh and F.H. Hassan, Rev. Sci. Fondam. Appl., 8, 839 (2016); https://doi.org/10.4314/jfas.8vi2s.138
Y. Xu, V. Musumeci and C. Aymonier, J. Reaction Chem. Eng., 4, 2030 (2019); https://doi.org/10.1039/C9RE00290A
S.D. Manjare and K. Dhingra, Mater. Sci. Energy Technol., 2, 463 (2019); https://doi.org/10.1016/j.mset.2019.04.005
J.O. Adeyemi, A.O. Oriola, D.C. Onwudiwe and A.O. Oyedeji, Biomolecules, 12, 627 (2022); https://doi.org/10.3390/biom12050627
H.B.H. Rahuman, R. Dhandapani, S. Narayanan, R. Paramasivam, V. Palanivel, R. Subbarayalu, S. Thangavelu and S. Muthupandian, IET Nanobiotechnol., 16, 115 (2022); https://doi.org/10.1049/nbt2.12078
V. Soni, P. Raizada, P. Singh, H.N. Cuong, Rangabhashiyam S, A. Saini, R.V. Saini, Q.V. Le, A.K. Nadda and T.-T. Le, Environ. Res., 202, 111622 (2021); https://doi.org/10.1016/j.envres.2021.111622
E. Priyadarshini, S.S. Priyadarshini and N. Pradhan, Appl. Microbiol. Biotechnol., 103, 3297 (2019); https://doi.org/10.1007/s00253-019-09685-3
S. Jadoun, R. Arif, N.K. Jangid and R.K. Meena, Environ. Chem. Lett., 19, 355 (2021); https://doi.org/10.1007/s10311-020-01074-x
R. Rajkumar, G. Ezhumalai and M. Gnanadesigan, Environ. Technol. Innov., 21, 101282 (2021); https://doi.org/10.1016/j.eti.2020.101282
D. Chugh, V.S. Viswamalya and B. Das, J. Genet. Eng. Biotechnol., 19, 126 (2021); https://doi.org/10.1186/s43141-021-00228-w
A. Gogos, K. Knauer and T.D. Bucheli, J. Agric. Food Chem., 60, 9781 (2012); https://doi.org/10.1021/jf302154y
M. Fan, J. Shen, L. Yuan, R. Jiang, X. Chen, W.J. Davies and F. Zhang, J. Exp. Bot., 63, 13 (2012); https://doi.org/10.1093/jxb/err248
R.H. Taheri, M.S. Miah, M.G. Rabbani and M.A. Rahim, Eur. J. Agric. Food Sci., 2, 1 (2020); https://doi.org/10.24018/ejfood.2020.2.4.96
M.S. Miah, R.H. Taheri, M.G. Rabbani and M.R. Karim, Int. J. Biosci., 17, 126 (2020); http://dx.doi.org/10.12692/ijb/17.4.126-133
P.K. Mani and S. Mondal, Agri-nano Techniques for Plant Availability of Nutrients, In: Plant Nanotechnology. Springer, Cham, pp. 263-303 (2016).
H. Chhipa, Environ. Chem. Lett., 15, 15 (2017); https://doi.org/10.1007/s10311-016-0600-4
I.R. Khot, S. Sankaran, J.M. Maja, R. Ehsani and E.W. Schuster, Crop Prot., 35, 64 (2012); https://doi.org/10.1016/j.cropro.2012.01.007
R. Liu and R. Lal, Sci. Total Environ., 514, 131 (2015); https://doi.org/10.1016/j.scitotenv.2015.01.104
J.S. Vander-Gheynst, H. Scher and H.-Y. Guo, Ind. Biotechnol., 2, 213 (2006); http://doi.org/10.1089/ind.2006.2.213
S.K. Shukla, R. Kumar, R.K. Mishra, A. Pandey, A. Pathak, M.G.H. Zaidi, S.K. Srivastava and A. Dikshit, Nanotechnol. Rev., 4, 439 (2015); https://doi.org/10.1515/ntrev-2015-0036
X. Zhao, H. Cui, Y. Wang, C. Sun, B. Cui and Z. Zeng, J. Agric. Food Chem., 66, 6504 (2018); https://doi.org/10.1021/acs.jafc.7b02004
Y. Tong, Y. Wu, C. Zhao, Y. Xu, J. Lu, S. Xiang, F. Zong and X. Wu, J. Agric. Food Chem., 65, 7371 (2017); https://doi.org/10.1021/acs.jafc.7b02197
B. Deka, A. Babu, C. Baruah and M. Barthakur, Front. Nutr., 8, 686131 (2021); https://doi.org/10.3389/fnut.2021.686131
R. Sheykhbaglou, M. Sedghi, M.T. Shishevan and R.S. Sharifi, Not. Sci. Biol., 2, 112 (2010); https://doi.org/10.15835/nsb224667
N. Scott and H. Chen, Ind. Biotechnol., 9, 17 (2013); https://doi.org/10.1089/ind.2013.1555
I.X. Yin, J. Zhang, I.S. Zhao, M.L. Mei, Q. Li and C.H. Chu, Int. J. Nanomed., 15, 2555 (2020); https://doi.org/10.2147/IJN.S246764
V. Pareek, R. Gupta and J. Panwar, Mater. Sci. Eng. C Mater. Biol. Appl., 90, 739 (2018); https://doi.org/10.1016/j.msec.2018.04.093
K. Zheng, M.I. Setyawati, D.T. Leong and J Xie, Coord. Chem. Rev., 357, 1 (2018); https://doi.org/10.1016/j.ccr.2017.11.019
M. Soltani Nejad, G.H.S. Bonjar, M. Khatami, A. Amini and S. Aghighi, IET Nanobiotechnol., 11, 236 (2016); https://doi.org/10.1049/iet-nbt.2015.0121
A. Sidhu, H. Barmota and A. Bala, Appl. Nanosci., 7, 681 (2017); https://doi.org/10.1007/s13204-017-0606-7
S. Gaba, A.K. Rai, A. Varma, R. Prasad and A. Goel, Front. Chem., 10, 966396 (2022); https://doi.org/10.3389/fchem.2022.966396
Q.B. Ngo, T.H. Dao, H.C. Nguyen, X.T. Tran, T.V. Nguyen, T.D. Khuu and T.H. Huynh, Adv. Nat. Sci.: Nanosci. Nanotechnol., 5, 015016 (2014); https://doi.org/10.1088/2043-6262/5/1/015016
F. Asghari, Z. Jahanshiri, M. Imani, M. Shams-Ghahfarokhi and M. Razzaghi-Abyaneh, Eds.: A.M. Grumezescu, Antifungal Nanomaterials: Synthesis, Properties and Applications, In: Nano-biomaterials in Antimicrobial Therapy, Elsevier: Amsterdam, pp. 343-383 (2016).
P. Bardos, C. Merly, P. Kvapil and H.-P. Koschitzky, Rem. J., 28, 43 (2018); https://doi.org/10.1002/rem.21559
Y.S. Kim, N.H. Ahmad Raston and M. Bock Gu, Biosens. Bioelectron., 76, 2 (2016); https://doi.org/10.1016/j.bios.2015.06.040
S. Cicek and H. Nadaroglu, Adv. Nano Res., 3, 207 (2015); https://doi.org/10.12989/anr.2015.3.4.207
V. Rai, S. Acharya and N. Dey, J. Biomater. Nanobiotechnol., 3, 315 (2012); https://doi.org/10.4236/jbnb.2012.322039
S. Baruah and J. Dutta, Environ. Chem. Lett., 7, 191 (2009); https://doi.org/10.1007/s10311-009-0228-8
D. Erickson, S. Mandal, A.H.J. Yang and B. Cordovez, Microfluid. Nanofluidics, 4, 33 (2008); https://doi.org/10.1007/s10404-007-0198-8
S.-Y. Kwak, M.H. Wong, T.T.S. Lew, G. Bisker, M.A. Lee, A. Kaplan, J. Dong, A.T. Liu, V.B. Koman, R. Sinclair, C. Hamann and M.S. Strano, Annu. Rev. Anal. Chem., 10, 113 (2017); https://doi.org/10.1146/annurev-anchem-061516-045310
J.A.T. da Silva, D.T. Nhut, M. Tanaka and S. Fukai, Scientia Horticult., 97, 397 (2003); https://doi.org/10.1016/S0304-4238(02)00219-4
M.K. Sarmast and H. Salehi, Mol. Biotechnol., 58, 441 (2016); https://doi.org/10.1007/s12033-016-9943-0
N. Dasgupta, S. Ranjan and C. Ramalingam, Environ. Chem. Lett., 15, 591 (2017); https://doi.org/10.1007/s10311-017-0648-9
H.K. Dhingra, P.N. Jha and M.P. Bajpai, Current Topics in Biotechnology and Microbiology, Lambert Academic Publishing, Saarbrücken (2011).
M.F. Serag, N. Kaji, S. Habuchi, A. Bianco and Y. Baba, RSC Adv., 3, 4856 (2013); https://doi.org/10.1039/c2ra22766e
Y-H. Lee, B. Wu, W.-Q. Zhuang, D.-R. Chen and Y.J. Tang, J. Microbiol. Methods, 84, 228 (2011); https://doi.org/10.1016/j.mimet.2010.11.022
Q. Liu, B. Chen, Q. Wang, X. Shi, Z. Xiao, J. Lin and X. Fang, Nano Lett., 9, 1007 (2009); https://doi.org/10.1021/nl803083u
C. Vijayalakshmi, C. Chellaram and S.L. Kumar, Biosci. Biotechnol. Res. Asia, 12, 327 (2015); https://doi.org/10.13005/bbra/1669
F. Torney, B.G. Trewyn, V.S.-Y. Lin and K. Wang, Nat. Nanotechnol., 2, 295 (2007); https://doi.org/10.1038/nnano.2007.108
T. Sone, E. Nagamori, T. Ikeuchi, A. Mizukami, Y. Takakura, S. Kajiyama, E. Fukusaki, S. Harashima, A. Kobayashi and K. Fukui, J. Biosci. Bioeng., 94, 87 (2002); https://doi.org/10.1016/S1389-1723(02)80123-2
M.L. Flores-Lopez, M.A. Cerqueira, D.J. de Rodriguez and A.A. Vicente, Food Eng. Rev., 8, 292 (2016); https://doi.org/10.1007/s12393-015-9135-x
O.L. Ramos, R.N. Pereira, R. Rodrigues, J.A. Teixeira, A.A. Vicente and F. Xavier Malcata, Food Res. Int., 66, 344 (2014); https://doi.org/10.1016/j.foodres.2014.09.036
A.N. Misra, M. Misra and R. Singh, Int. J. Pure Appl. Sci. Technol., 16, 1 (2013).
S.C. Shit and P.M. Shah, J. Polym., 2014, 427259 (2014); https://doi.org/10.1155/2014/427259
Q. Chaudhry and L. Castle, Trends Food Sci. Technol., 22, 595 (2011); https://doi.org/10.1016/j.tifs.2011.01.001
D.J. McClements, J. Food Sci., 75, R30 (2010); https://doi.org/10.1111/j.1750-3841.2009.01452.x
B.A. Magnuson, T.S. Jonaitis and J.W. Card, J. Food Sci., 76, R126 (2011); https://doi.org/10.1111/j.1750-3841.2011.02170.x
S. Sun, V. Sidhu, Y. Rong and Y. Zheng, Curr. Pollut. Rep., 4, 240 (2018); https://doi.org/10.1007/s40726-018-0092-x
H.I. Gomes, G. Fan, E.P. Mateus, C. Dias-Ferreira and A.B. Ribeiro, Sci. Total Environ., 493, 178 (2014); https://doi.org/10.1016/j.scitotenv.2014.05.112
M. Gil-Díaz, S. Diez-Pascual, A. González, J. Alonso, E. Rodriguez-Valdes, J.R. Gallego and M.C. Lobo, Chemosphere, 149, 137 (2016); https://doi.org/10.1016/j.chemosphere.2016.01.106
N.C. Mueller and B. Nowack, Elements, 6, 395 (2010); https://doi.org/10.2113/gselements.6.6.395
A.S. Adeleye, A.A. Keller, R.J. Miller and H.S. Lenihan, J. Nanopart. Res., 15, 1418 (2013); https://doi.org/10.1007/s11051-013-1418-7
E. Maine, V.J. Thomas, M. Bliemel, A. Murira and J. Utterback, Nat. Nanotechnol., 9, 2 (2014); https://doi.org/10.1038/nnano.2013.288
H. Onyeaka, P. Passaretti, T. Miri and Z.T. Al-Sharify, Curr. Res. Food Sci., 5, 763 (2022); https://doi.org/10.1016/j.crfs.2022.04.005
K. Donaldson, V. Stone, C.L. Tran, W. Kreyling and P.J. Borm, Occup. Environ. Med., 61, 727 (2004); https://doi.org/10.1136/oem.2004.013243
T. Singh, S. Shukla, P. Kumar, V. Wahla, V.K. Bajpai and I.A. Rather, Front. Microbiol., 8, 1501 (2017); https://doi.org/10.3389/fmicb.2017.01501
C. Ruiz-Capillas and A.M. Herrero, Foods, 10, 582 (2021); https://doi.org/10.3390/foods10030582
P.N. Ezhilarasi, P. Karthik, N. Chhanwal and C. Anandharamakrishnan, Food Bioprocess Technol., 6, 628 (2013); https://doi.org/10.1007/s11947-012-0944-0
H. Chen, J.N. Seiber and M. Hotze, J. Agric. Food Chem., 62, 1209 (2014); https://doi.org/10.1021/jf5002588
A. Prakash, S. Sen and R. Dixit, Int. J. Pharm. Sci. Rev. Res., 22, 107 (2013).
Q. Chaudhry, M. Scotter, J. Blackburn, B. Ross, A. Boxall, L. Castle, R. Aitken and R. Watkins, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 25, 241 (2008); https://doi.org/10.1080/02652030701744538
S. Neethirajan and D.S. Jayas, Food Bioprocess Technol., 4, 39 (2011); https://doi.org/10.1007/s11947-010-0328-2
S. Bhattacharjee, E.J. van Opstal, G.M. Alink, A.T. Marcelis, H. Zuilhof and I.M. Rietjens, J. Nanopart. Res., 15, 1695 (2013); https://doi.org/10.1007/s11051-013-1695-1
K. Oehlke, M. Adamiuk, D. Behsnilian, D.V. Graf, E. Mayer-Miebach, E. Walz and R. Greiner, Food Funct., 5, 1341 (2014); https://doi.org/10.1039/c3fo60067j
N. Sozer and J.L. Kokini, Trends Biotechnol., 27, 82 (2009); https://doi.org/10.1016/j.tibtech.2008.10.010
K.I. Popov, A.N. Filippov and S.A. Khurshudyan, Russ. J. Gen. Chem., 80, 630 (2010); https://doi.org/10.1134/S1070363210030436
D. Coles and L.J. Frewer, Trends Food Sci. Technol., 34, 32 (2013); https://doi.org/10.1016/j.tifs.2013.08.006
F.J. Gutierrez, M.L. Mussons, P. Gaton, R. Rojo and B. Valdez, Nanotechnology and Food Industry, In: Scientific, Health and Social Aspects of the Food Industry, Rijeka, InTech, p. 488 (2012).
H.J. Park, S.H. Kim, H.J. Kim and S.H. Choi, Plant Pathol. J., 22, 295 (2006); https://doi.org/10.5423/PPJ.2006.22.3.295
T.V. Duncan, J. Colloid Interface Sci., 363, 1 (2011); https://doi.org/10.1016/j.jcis.2011.07.017
M. Cushen, J. Kerry, M. Morris, M. Cruz-Romero and E. Cummins, Trends Food Sci. Technol., 24, 30 (2012); https://doi.org/10.1016/j.tifs.2011.10.006
N. Gandhi, S. Khurana, R. Mathur, U. Bansal and R. Nair, Asian J. Chem., 34, 2499 (2022); https://doi.org/10.14233/ajchem.2022.23917
S.S.H. Rizvi, C.I. Moraru, H. Bouwmeester and F.W.H. Kampers, Eds.: C.E. Boisrobert and A. Stjepanovic, Ensuring Global Food Safety, In: Nanotechnology and Food Safety, Elsevier, pp. 263-280 (2010).
C. Silvestre, D. Duraccio and S. Cimmino, Prog. Polym. Sci., 36, 1766 (2011); https://doi.org/10.1016/j.progpolymsci.2011.02.003
B.S. Sekhon, J. Nanotechnol. Sci. Appl., 3, 1 (2010).
A. Sorrentino, G. Gorrasi and V. Vittoria, Trends Food Sci. Technol., 18, 84 (2007); https://doi.org/10.1016/j.tifs.2006.09.004
M. Imran, A.-M. Revol-Junelles, A. Martyn, E.A. Tehrany, M. Jacquot, M. Linder and S. Desobry, Crit. Rev. Food Sci. Nutr., 50, 799 (2010); https://doi.org/10.1080/10408398.2010.503694
K.B. Biji, C.N. Ravishankar, C.O. Mohan and T.K. Srinivasa Gopal, J. Food Sci. Technol., 52, 6125 (2015); https://doi.org/10.1007/s13197-015-1766-7
J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez and M.J. Yacaman, Nanotechnology, 16, 2346 (2005); https://doi.org/10.1088/0957-4484/16/10/059
T. Ghosh, G.V.S. Bhagya Raj and K.K. Dash, Measurement: Food, 7, 100049 (2022); https://doi.org/10.1016/j.meafoo.2022.100049
Y. Xing,W. Li, Q. Wang, X. Li, Q. Xu, X. Guo, X. Bi, X. Liu, Y. Shui, H. Lin and H. Yang, Molecules, 24, 1695 (2019); https://doi.org/10.3390/molecules24091695
B.L. Reddy, H.S. Jatav, V.D. Rajput, T. Minkina, A. Harikrishnan, V.K. Veena, A. Ranjan, A. Chauhan, S. Kumar, A. Prakash and R. Prasad, J. Nanomater., 2022, 9543532 (2022); https://doi.org/10.1155/2022/9543532
V. Templier, T. Livache, S. Boisset, M. Maurin, S. Slimani, R. Mathey and Y. Roupioz, Sci. Rep., 7, 9457 (2017); https://doi.org/10.1038/s41598-017-10072-z
K.S. Hwang, S.-M. Lee, S.K. Kim, J.H. Lee and T.S. Kim, Ann. Rev. Anal. Chem., 2, 77 (2009); https://doi.org/10.1146/annurev-anchem-060908-155232
D. Branton, D.W Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M.D. Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krstic, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin and J.A. Schloss, Nat. Biotechnol., 26, 1146 (2009); https://doi.org/10.1038/nbt.1495
K. Wu, R. Saha, D. Su, V.D. Krishna, J. Liu, M.C.-J. Cheeran and J.-P. Wang, ACS Appl. Nano Mater., 3, 9560 (2020); https://doi.org/10.1021/acsanm.0c02048
G. Sabarees, V. Velmurugan, G.P. Tamilarasi, V. Alagarsamy and V.R. Solomon, Polymers, 14, 3994 (2022); https://doi.org/10.3390/polym14193994
A.H. Havelaar, M.D. Kirk, P.R. Torgerson, H.J. Gibb, T. Hald, R.J. Lake, N. Praet, D.C. Bellinger, N.R. de Silva, N. Gargouri, N. Speybroeck, A. Cawthorne, C. Mathers, C. Stein, F.J. Angulo and B. Devleesschauwer, PLoS Med., 12, e1001923 (2015); https://doi.org/10.1371/journal.pmed.1001923
V.K. Bajpai, M. Kamle, S. Shukla, D.K. Mahato, P. Chandra, S.K. Hwang, P. Kumar, Y.S. Huh and Y.-K. Han, J. Food Drug Anal., 26, 1201 (2018); https://doi.org/10.1016/j.jfda.2018.06.011
S. Garcia-Pinilla, Nanotechnology in Food Processing. In: Advances in Processing Technologies for Bio-based Nanosystems in Food, CRC Press: Boca Raton, pp. 259-276 (2019).
B. Perez-Lopez and A. Merkoçi, Trends Food Sci. Technol., 22, 625 (2011); https://doi.org/10.1016/j.tifs.2011.04.001
J. Baio, L. Wiggins, D.L. Christensen, M.J. Maenner, J. Daniels, Z. Warren, M. Kurzius-Spencer, W. Zahorodny, C.R. Rosenberg, T. White, M.S. Durkin, P. Imm, L. Nikolaou, M. Yeargin-Allsopp, L.-C. Lee, R. Harrington, M. Lopez, R.T. Fitzgerald, A. Hewitt, S. Pettygrove, J.N. Constantino, A. Vehorn, J. Shenouda, J. Hall-Lande, K.V. Naarden Braun and N.F. Dowling, MMWR Surveill. Summ., 67, 1 (2018).
Centers for Disease Control and Prevention (CDC), Surveillance for Foodborne Disease Outbreaks, United States, Annual Report. Atlanta: US Department of Health and Human Services, CDC (2015).
A. Kumar, A. Pratush and S. Bera, Significance of Nanoscience in Food Microbiology: Current Trend and Prospects. In: Nanotechnology for Advances in Medical Microbiology, Springer: Singapore, pp. 249-267 (2021).
N.F. Nasr, Int. J. Curr. Microbiol. Appl. Sci., 4, 846 (2015).
K. El-Boubbou, C. Gruden and X. Huang, J. Am. Chem. Soc., 129, 13392 (2007); https://doi.org/10.1021/ja076086e
M. Eleftheriadou, G. Pyrgiotakis and P. Demokritou, Curr. Opin., 44, 87 (2017).
A.M. Grumezescu and A.M. Holban, Impact of Nanoscience in the Food Industry, Academic Press: London, vol. 12 (2018).
C.H. Kaya and K. Mallikarjunan, Food Eng. Rev., 4, 114 (2012).
V. Krishna, S. Pumprueg, S.-H. Lee, J. Zhao, W. Sigmund, B. Koopman and B.M. Moudgil, Process Safety Environ. Prot., 83, 393 (2005); https://doi.org/10.1205/psep.04387
A.J. Kora and L. Rastogi, Bioinorg. Chem. Appl., 2013, 871097 (2013); https://doi.org/10.1155/2013/871097
A. Nair, R. Mallya, V. Suvarna, T.A. Khan, M. Momin and A. Omri, Antibiotics, 11, 108 (2022); https://doi.org/10.3390/antibiotics11010108
C. Gomes, R.G. Moreira and E. Castell-Perez, J. Food Sci., 76, N16 (2011); https://doi.org/10.1111/j.1750-3841.2010.01985.x
H.H. Khalaf, A.M. Sharoba, H.H. El-Tanahi and M.K. Morsy, J. Food Dairy Sci., 4, 557 (2013); https://doi.org/10.21608/JFDS.2013.72104
T. Begum, P.A. Follett, J. Mahmud, L. Moskovchenko, S. Salmieri, Z. Allahdad and M. Lacroix, Microbial Pathogenesis, 164, 105411 (2022); https://doi.org/10.1016/j.micpath.2022.105411
S.H. Nile, V. Baskar, D. Selvaraj, A. Nile, J. Xiao and G. Kai, Nano-Micro Lett., 12, 45 (2020); https://doi.org/10.1007/s40820-020-0383-9
V. Krishna, S. Pumprueg, S.H. Lee, J. Zhao, W. Sigmund, B. Koopman and B.M. Moudgil, Process Saf. Environ. Prot., 83, 393 (2005); https://doi.org/10.1205/psep.04387
K.H. Cho, J.E. Park, T. Osaka and S.G. Park, Electrochim. Acta, 51, 956 (2005); https://doi.org/10.1016/j.electacta.2005.04.071
C. Gomes Silva, R. Juárez, T. Marino, R. Molinari and H. García, J. Am. Chem. Soc., 133, 595 (2011); https://doi.org/10.1021/ja1086358
M.K. Morsy, H.H. Khalaf, A.M. Sharoba, H.H. Eltanahi and C.N. Cutter, J. Food Sci., 79, M675 (2014); https://doi.org/10.1111/1750-3841.12400
K. Myszka and K. Czaczyk, Pol. J. Food Nutr. Sci., 61, 173 (2011); https://doi.org/10.2478/v10222-011-0018-4
L.C. Giannossa, D. Longano, N. Ditaranto, M.A. Nitti, F. Paladini, M. Pollini, M. Rai, A. Sannino, A. Valentini and N. Cioffi, Nanotech. Rev., 2, 307 (2013); https://doi.org/10.1515/ntrev-2013-0004
A. Calle, M. Fernandez, B. Montoya, M. Schmidt and J. Thompson, Foods. 10, 1459 (2021); https://doi.org/10.3390/foods10071459
A. Das, M. Raffi, C. Megaridis, D. Fragouli, C. Innocenti and A. Athanassiou, J. Nanopart. Res., 17, 1 (2015); https://doi.org/10.1007/s11051-014-2856-6
C. Colica, V. Aiello, L. Boccuto, N. Kobyliak, M.C. Strongoli, I. Vecchio and L. Abenavoli, Minerva Biotechnol., 30, 69 (2018); https://doi.org/10.23736/S1120-4826.18.02394-7
M.M. Berekaa, Int. J. Curr. Microbiol. Appl. Sci., 4, 345 (2015).
E.L. Bradley, L. Castle and Q. Chaudhry, Trends Food Sci. Technol., 22, 604 (2011); https://doi.org/10.1016/j.tifs.2011.01.002
K. Arshak, C. Adley, E. Moore, C. Cunniffe, M. Campion and J. Harris, Sens. Actuators B Chem., 126, 226 (2007); https://doi.org/10.1016/j.snb.2006.12.006
S.R. Horner, C.R. Mace, L.J. Rothberg and B.L. Miller, Biosens. Bioelectron., 21, 1659 (2006); https://doi.org/10.1016/j.bios.2005.07.019
N JonesB RayK T RanjitA C Manna. N. Jones, B. Ray, K.T. Ranjit and A.C. Manna, FEMS Microbiol. Lett., 279, 71 (2008); https://doi.org/10.1111/j.1574-6968.2007.01012.x
S. Kang, M. Pinault, L.D. Pfefferle and M. Elimelech, Langmuir, 23, 8670 (2007); https://doi.org/10.1021/la701067r
R. Prasad, A. Bhattacharyya and Q.D. Nguyen, Front Microbiol., 8, 1014 (2017); https://doi.org/10.3389/fmicb.2017.01014
S.K. Biswal, Int. J. Sci. Innov. Discov., 2, 21 (2012).
J. Flanagan and H. Singh, Crit. Rev. Food Sci. Nutr., 46, 221 (2006); https://doi.org/10.1080/10408690590956710
A. Thirumurugan, S. Ramachandran and G.A. Shiamala, Int. Food Res. J., 20, 1909 (2013).
D. Davis, X. Guo, L. Musavi, C.S. Lin, S.H. Chen and V.C.H. Wu, Ind. Biotechnol., 9, 31 (2013); https://doi.org/10.1089/ind.2012.0033
L. Yotova, S. Yaneva and D. Marinkova, J. Chem. Technol. Metall., 48, 215 (2013).
S. Yadav, G.K. Mehrotra and P.K. Dutta, Food Chem., 334, 127605 (2021); https://doi.org/10.1016/j.foodchem.2020.127605
X. Zhang, G. Xiao, Y. Wang, Y. Zhao, H. Su and T. Tan, Carbohydr. Polym., 169, 101 (2017); https://doi.org/10.1016/j.carbpol.2017.03.073
R. Gu, H. Yun, L. Chen, Q. Wang and X. Huang, ACS Appl. Bio Mater., 3, 602 (2020); https://doi.org/10.1021/acsabm.9b00992
A. Jain, R. Shivendu, D. Nandita and R. Chidambaram, Crit. Rev. Food Sci. Nutr., 58, 297 (2016); https://doi.org/10.1080/10408398.2016.1160363
K. Savolainen, L. Pylkkanen, H. Norppa, G. Falck, H. Lindberg, T. Tuomi, M. Vippola, H. Alenius, K. Hämeri, J. Koivisto, D. Brouwer, D. Mark, D. Bard, M. Berges, E. Jankowska, M. Posniak, P. Farmer, R. Singh, F. Krombach, P. Bihari, G. Kasper and M. Seipenbusch, Saf. Sci., 48, 957 (2010); https://doi.org/10.1016/j.ssci.2010.03.006
J. Athinarayanan, V.S. Periasamy, M.A. Alsaif, A.A. Al-Warthan and A.A. Alshatwi, Cell Biol. Toxicol., 30, 89 (2014); https://doi.org/10.1007/s10565-014-9271-8
M. Cushen, J. Kerry, M. Morris, M. Cruz-Romero and E. Cummins, J. Agric. Food Chem., 62, 1403 (2014); https://doi.org/10.1021/jf404038y
G.J. Mahler, M.B. Esch, E. Tako, T.L. Southard, S.D. Archer, R.P. Glahn and M.L. Shuler, Nat. Nanotechnol., 7, 264 (2012); https://doi.org/10.1038/nnano.2012.3
D.J. Bennett and D. Schuurbiers, NSTI Nanotech., 2, 765 (2005).
V. Amenta, K. Aschberger, M. Arena, H. Bouwmeester, F.B. Moniz, P. Brandhoff, S. Gottardo, H.J.P. Marvin, A. Mech, L.Q. Pesudo, H. Rauscher, R. Schoonjans, M.V. Vettori, S. Weigel and R.J. Peters, Regul. Toxicol. Pharmacol., 73, 463 (2015); https://doi.org/10.1016/j.yrtph.2015.06.016