This work is licensed under a Creative Commons Attribution 4.0 International License.
Copper(II) Catalyzed Oxidation of Aliphatic Thiols (Thioglycolic Acid and 2-Mercaptoethanol) by Heteroleptic Co(III)-Bound Superoxo Complex
Corresponding Author(s) : A. Mandal
Asian Journal of Chemistry,
Vol. 35 No. 4 (2023): Vol 35 Issue 4, 2023
Abstract
In aqueous acid media (0.02-0.06 M), two aliphatic thiols (RSH) viz. thioglycolic acid (TGA) and mercapto ethanol (MERCAP) were oxidized by heteroleptic metal bound superoxo complex, [(dien)(en)CoIII(O2)CoIII(en)(dien)]5+ (1) (en = ethylenediamine, NH2CH2CH2NH2 and dien = diethylenetriamime, NH2(CH2)2NH(CH2)2NH2) to the corresponding disulphides. Complex 1 is reduced to its corresponding peroxo complex, [(dien)(en)CoIII(O2)CoIII(en)(dien)]4+ (2) in these reactions. The oxidation of both thiols were dramatically catalyzed by the presence of Cu2+ ion. The observed rate constant ko was found to be proportional to [RSH]2 and [Cu]T2 (where [Cu]T is the analytical concentration of Cu2+). The rate of reaction decreases with increasing ionic strength (I) of the reaction media and ko is also proportional to [H+]2–. The experimental observation suggests that a 1:2 anionic complex formed between Cu2+ and RSH participates in the redox cycle.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Ulrich and U. Jakob, Free Radic. Biol. Med., 140, 14 (2019); https://doi.org/10.1016/j.freeradbiomed.2019.05.035
- M.P. Murphy, Antioxid. Redox Signal., 476 (2012); http://doi.org/10.1089/ars.2011.4289
- M. Benhar, Antioxidants, 9, 309 (2020); https://doi.org/10.3390/antiox9040309
- F. Sardi, B. Manta, S. Portillo-Ledesma, B. Knoops, M. A. Comini and G. Ferrer-Sueta, Anal. Biochem., 435, 74 (2013); https://doi.org/10.1016/j.ab.2012.12.017
- G. Ferrer-Sueta, B. Manta, H. Botti, R. Radi, M. Trujill and A. Denicola, Chem. Res. Toxicol., 24, 434 (2011); https://doi.org/10.1021/tx100413v
- C.K. Sen and L. Packer, Am. J. Clin. Nutr., 72, 653S (2000); https://doi.org/10.1093/ajcn/72.2.653S
- C.K. Sen, J. Appl. Physiol., 79, 675 (1995); https://doi.org/10.1152/jappl.1995.79.3.675
- D.M. Beaupre and R.G. Weiss, Molecules, 26, 3332 (2021); https://doi.org/10.3390/molecules26113332
- L. Flohe, Biochim. Biophys. Acta, 1830, 3139 (2013); https://doi.org/10.1016/j.bbagen.2012.10.020
- M. Deponte, Antioxidants Redox Signal., 27, 1130 (2017); https://doi.org/10.1089/ars.2017.7123
- N. Brandes, D. Reichmann, H. Tienson, L.I. Leichert and U. Jakob, J. Biol. Chem., 286, 41893 (2011); https://doi.org/10.1074/jbc.M111.296236
- L.I. Leichert, F. Gehrke, H.V. Gudiseva, T. Blackwell, M. Ilbert, A.K. Walker, J.R. Strahler, P.C. Andrews and U. Jakob, Proc. Natl. Acad. Sci. USA, 105, 8197 (2008); https://doi.org/10.1073/pnas.0707723105
- P. Nagy and M.T. Ashby, J. Am. Chem. Soc., 129, 14082 (2007); https://doi.org/10.1021/ja0737218
- I. Pe’er, C.E. Felder, O. Man, I. Silman, J.L. Sussman and J.S. Beckmann, Proteins, 54, 20 (2004); https://doi.org/10.1002/prot.10559
- N.O. Baez, J.A. Reisz and C.M. Furdui, Free Radic. Biol. Med., 80, 191 (2015); https://doi.org/10.1016/j.freeradbiomed.2014.09.016
- A.R. Bourgonje, A.T. Otten, M.S. Sadabad, Z.H.J. von Martels, M.L.C. Bulthuis, K.N. Faber, H.V. Goor, G. Dijkstra and H.J.M. Harmsen, Free Radic. Biol. Med., 190, 169 (2022); https://doi.org/10.1016/j.freeradbiomed.2022.08.008
- S. Shinkai, S. Yamada, R. Ando and T. Kunitake, Bioorg. Chem., 9, 238 (1980); https://doi.org/10.1016/0045-2068(80)90024-3
- M. Takahashi, M. Takano and K. Asada, J. Biochem., 90, 87 (1981); https://doi.org/10.1093/oxfordjournals.jbchem.a133472
- R. Munday, C.M. Munday and C.C. Winterbourn, Free Radic. Biol. Med., 36, 757 (2004); https://doi.org/10.1016/j.freeradbiomed.2003.12.015
- A. Mandal, R.S. Das, B. Singh, R. Banerjee and S. Mukhopadhay, Can. J. Chem., 93, 1276 (2015); https://doi.org/10.1139/cjc-2015-0110
- A.I. Vogel, Eds.: J. Basett, R.C. Denny, G.H. Jeffery and J. Mendham, Vogel’s Textbook of Qualitative Inorganic Analysis, The English Language Book Society and Longman: London (1978).
- D.L. Duffy, D.A. House and J.A. Weil, J. Inorg. Nucl. Chem., 31, 2053 (1969); https://doi.org/10.1016/0022-1902(69)90020-7
- C.G. Barraclough, G.A. Lawrance and P.A. Lay, Inorg. Chem., 17, 3317 (1978); https://doi.org/10.1021/ic50190a001
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Edn.: 6, Wiley: New York (2009).
- S. Moosun, S.J. Laulloo and M.G. Bhowon, J. Sulfur Chem., 33, 661 (2012); https://doi.org/10.1080/17415993.2012.719897
- A. Krezel, J. Wójcik, M. Maciejczyk and W. Bal, Chem. Commun., 704 (2003); https://doi.org/10.1039/b300632h
- L. Ferretti, L. Elviri, M.A. Pellinghelli, G. Predieri and M. Tegoni, J. Inorg. Biochem., 101, 1442 (2007); https://doi.org/10.1016/j.jinorgbio.2007.06.020
- P.D. Oram, X. Fang, Q. Fernando, P. Letkeman and D. Letkeman, Chem. Res. Toxicol., 9, 709 (1996); https://doi.org/10.1021/tx9501896
- M.E. Aliaga, C. López-Alarcón, G. Barriga, C. Olea-Azar and H. Speisky, J. Inorg. Biochem., 104, 1084 (2010); https://doi.org/10.1016/j.jinorgbio.2010.06.006
- R. Haddad, E. Yousif and A. Ahmed, SpringerPlus, 2, 510 (2013); https://doi.org/10.1186/2193-1801-2-510
- S.K. Ghosh, S.K. Saha, M.C. Ghosh, R.N. Bose, J.W. Reed and E.S. Gould, Inorg. Chem., 31, 3358 (1992); https://doi.org/10.1021/ic00042a007
- S.P. Ghosh, S.K. Saha, R.N. Bose, J.W. Reed, M.C. Ghosh and E.S. Gould, Inorg. Chem., 32, 2261 (1993); https://doi.org/10.1021/ic00063a011
- L. Pecci, G. Montefoschi, G. Musci and D. Cavallini, Amino Acids, 13, 355 (1997); https://doi.org/10.1007/BF01372599
- A.V. Kachur, C.J. Koch and J.E. Biaglow, Free Radic. Res., 28, 259 (1998); https://doi.org/10.3109/10715769809069278
- A.V. Kachur, C.J. Koch and J.E. Biaglow, Free Radic. Res., 31, 23 (1999); https://doi.org/10.1080/10715769900300571
- Y. Ohta, N. Shiraishi, T. Nishikawa and M. Nishikimi, Biochim. Biophys. Acta, Gen. Subj., 1474, 378 (2000); https://doi.org/10.1016/S0304-4165(00)00034-9
- H. Speisky, M. Gómez, C. Carrasco-Pozo, E. Pastene, C. Lopez-Alarcón and C. Olea-Azar, Bioorg. Med. Chem., 16, 6568 (2008); https://doi.org/10.1016/j.bmc.2008.05.026
- H. Speisky, M. Gómez, F. Burgos-Bravo, C. López-Alarcón, C. Jullian, C. Olea-Azar and M.E. Aliaga, Bioorg. Med. Chem., 17, 1803 (2009); https://doi.org/10.1016/j.bmc.2009.01.069
- G.W. Watt and D.G. Upchurch, J. Am. Chem. Soc., 87, 4212 (1965); https://doi.org/10.1021/ja01096a053
- G.W. Watt and D.G. Upchurch, J. Am. Chem. Soc., 89, 177 (1967); https://doi.org/10.1021/ja00977a053
- G.W. Watt and D.G. Upchurch, J. Inorg. Nucl. Chem., 29, 1174 (1967); https://doi.org/10.1016/0022-1902(67)80107-6
- G.W. Watt, P.W. Alexander and B.S. Manhas, J. Am. Chem. Soc., 89, 6483 (1967); https://doi.org/10.1021/ja01001a019
- S. Gain, R. S. Das, R. Banerjee and S. Mukhopadhyay, J. Coord. Chem., 69, 2136 (2016); https://doi.org/10.1080/00958972.2016.1206198
References
K. Ulrich and U. Jakob, Free Radic. Biol. Med., 140, 14 (2019); https://doi.org/10.1016/j.freeradbiomed.2019.05.035
M.P. Murphy, Antioxid. Redox Signal., 476 (2012); http://doi.org/10.1089/ars.2011.4289
M. Benhar, Antioxidants, 9, 309 (2020); https://doi.org/10.3390/antiox9040309
F. Sardi, B. Manta, S. Portillo-Ledesma, B. Knoops, M. A. Comini and G. Ferrer-Sueta, Anal. Biochem., 435, 74 (2013); https://doi.org/10.1016/j.ab.2012.12.017
G. Ferrer-Sueta, B. Manta, H. Botti, R. Radi, M. Trujill and A. Denicola, Chem. Res. Toxicol., 24, 434 (2011); https://doi.org/10.1021/tx100413v
C.K. Sen and L. Packer, Am. J. Clin. Nutr., 72, 653S (2000); https://doi.org/10.1093/ajcn/72.2.653S
C.K. Sen, J. Appl. Physiol., 79, 675 (1995); https://doi.org/10.1152/jappl.1995.79.3.675
D.M. Beaupre and R.G. Weiss, Molecules, 26, 3332 (2021); https://doi.org/10.3390/molecules26113332
L. Flohe, Biochim. Biophys. Acta, 1830, 3139 (2013); https://doi.org/10.1016/j.bbagen.2012.10.020
M. Deponte, Antioxidants Redox Signal., 27, 1130 (2017); https://doi.org/10.1089/ars.2017.7123
N. Brandes, D. Reichmann, H. Tienson, L.I. Leichert and U. Jakob, J. Biol. Chem., 286, 41893 (2011); https://doi.org/10.1074/jbc.M111.296236
L.I. Leichert, F. Gehrke, H.V. Gudiseva, T. Blackwell, M. Ilbert, A.K. Walker, J.R. Strahler, P.C. Andrews and U. Jakob, Proc. Natl. Acad. Sci. USA, 105, 8197 (2008); https://doi.org/10.1073/pnas.0707723105
P. Nagy and M.T. Ashby, J. Am. Chem. Soc., 129, 14082 (2007); https://doi.org/10.1021/ja0737218
I. Pe’er, C.E. Felder, O. Man, I. Silman, J.L. Sussman and J.S. Beckmann, Proteins, 54, 20 (2004); https://doi.org/10.1002/prot.10559
N.O. Baez, J.A. Reisz and C.M. Furdui, Free Radic. Biol. Med., 80, 191 (2015); https://doi.org/10.1016/j.freeradbiomed.2014.09.016
A.R. Bourgonje, A.T. Otten, M.S. Sadabad, Z.H.J. von Martels, M.L.C. Bulthuis, K.N. Faber, H.V. Goor, G. Dijkstra and H.J.M. Harmsen, Free Radic. Biol. Med., 190, 169 (2022); https://doi.org/10.1016/j.freeradbiomed.2022.08.008
S. Shinkai, S. Yamada, R. Ando and T. Kunitake, Bioorg. Chem., 9, 238 (1980); https://doi.org/10.1016/0045-2068(80)90024-3
M. Takahashi, M. Takano and K. Asada, J. Biochem., 90, 87 (1981); https://doi.org/10.1093/oxfordjournals.jbchem.a133472
R. Munday, C.M. Munday and C.C. Winterbourn, Free Radic. Biol. Med., 36, 757 (2004); https://doi.org/10.1016/j.freeradbiomed.2003.12.015
A. Mandal, R.S. Das, B. Singh, R. Banerjee and S. Mukhopadhay, Can. J. Chem., 93, 1276 (2015); https://doi.org/10.1139/cjc-2015-0110
A.I. Vogel, Eds.: J. Basett, R.C. Denny, G.H. Jeffery and J. Mendham, Vogel’s Textbook of Qualitative Inorganic Analysis, The English Language Book Society and Longman: London (1978).
D.L. Duffy, D.A. House and J.A. Weil, J. Inorg. Nucl. Chem., 31, 2053 (1969); https://doi.org/10.1016/0022-1902(69)90020-7
C.G. Barraclough, G.A. Lawrance and P.A. Lay, Inorg. Chem., 17, 3317 (1978); https://doi.org/10.1021/ic50190a001
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Edn.: 6, Wiley: New York (2009).
S. Moosun, S.J. Laulloo and M.G. Bhowon, J. Sulfur Chem., 33, 661 (2012); https://doi.org/10.1080/17415993.2012.719897
A. Krezel, J. Wójcik, M. Maciejczyk and W. Bal, Chem. Commun., 704 (2003); https://doi.org/10.1039/b300632h
L. Ferretti, L. Elviri, M.A. Pellinghelli, G. Predieri and M. Tegoni, J. Inorg. Biochem., 101, 1442 (2007); https://doi.org/10.1016/j.jinorgbio.2007.06.020
P.D. Oram, X. Fang, Q. Fernando, P. Letkeman and D. Letkeman, Chem. Res. Toxicol., 9, 709 (1996); https://doi.org/10.1021/tx9501896
M.E. Aliaga, C. López-Alarcón, G. Barriga, C. Olea-Azar and H. Speisky, J. Inorg. Biochem., 104, 1084 (2010); https://doi.org/10.1016/j.jinorgbio.2010.06.006
R. Haddad, E. Yousif and A. Ahmed, SpringerPlus, 2, 510 (2013); https://doi.org/10.1186/2193-1801-2-510
S.K. Ghosh, S.K. Saha, M.C. Ghosh, R.N. Bose, J.W. Reed and E.S. Gould, Inorg. Chem., 31, 3358 (1992); https://doi.org/10.1021/ic00042a007
S.P. Ghosh, S.K. Saha, R.N. Bose, J.W. Reed, M.C. Ghosh and E.S. Gould, Inorg. Chem., 32, 2261 (1993); https://doi.org/10.1021/ic00063a011
L. Pecci, G. Montefoschi, G. Musci and D. Cavallini, Amino Acids, 13, 355 (1997); https://doi.org/10.1007/BF01372599
A.V. Kachur, C.J. Koch and J.E. Biaglow, Free Radic. Res., 28, 259 (1998); https://doi.org/10.3109/10715769809069278
A.V. Kachur, C.J. Koch and J.E. Biaglow, Free Radic. Res., 31, 23 (1999); https://doi.org/10.1080/10715769900300571
Y. Ohta, N. Shiraishi, T. Nishikawa and M. Nishikimi, Biochim. Biophys. Acta, Gen. Subj., 1474, 378 (2000); https://doi.org/10.1016/S0304-4165(00)00034-9
H. Speisky, M. Gómez, C. Carrasco-Pozo, E. Pastene, C. Lopez-Alarcón and C. Olea-Azar, Bioorg. Med. Chem., 16, 6568 (2008); https://doi.org/10.1016/j.bmc.2008.05.026
H. Speisky, M. Gómez, F. Burgos-Bravo, C. López-Alarcón, C. Jullian, C. Olea-Azar and M.E. Aliaga, Bioorg. Med. Chem., 17, 1803 (2009); https://doi.org/10.1016/j.bmc.2009.01.069
G.W. Watt and D.G. Upchurch, J. Am. Chem. Soc., 87, 4212 (1965); https://doi.org/10.1021/ja01096a053
G.W. Watt and D.G. Upchurch, J. Am. Chem. Soc., 89, 177 (1967); https://doi.org/10.1021/ja00977a053
G.W. Watt and D.G. Upchurch, J. Inorg. Nucl. Chem., 29, 1174 (1967); https://doi.org/10.1016/0022-1902(67)80107-6
G.W. Watt, P.W. Alexander and B.S. Manhas, J. Am. Chem. Soc., 89, 6483 (1967); https://doi.org/10.1021/ja01001a019
S. Gain, R. S. Das, R. Banerjee and S. Mukhopadhyay, J. Coord. Chem., 69, 2136 (2016); https://doi.org/10.1080/00958972.2016.1206198