Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Influence of Synergistic Tributyl Phosphate and Di-(2-ethylhexyl)phosphoric Acid for Separation of Gadolinium and Samarium by Emulsion Liquid Membrane
Corresponding Author(s) : A. Anggraeni
Asian Journal of Chemistry,
Vol. 35 No. 3 (2023): Vol 35 Issue 3, 2023
Abstract
Gadolinium is one of the rare earth elements, which plays an essential role in modern industry. Its separation from mixtures of other rare earth elements is challenging due to similar physical and chemical properties. The extraction method using an emulsion liquid membrane is an effective and simple method for separating low concentration gadolinium from other rare earth elements mixtures. It is more eco-friendly than the liquid-liquid extraction process and also has various advantages. This study aims to determine the effectiveness, permeability and optimum formulation conditions for the separation of gadolinium and samarium using synergistic ligands tributyl phosphate and di-(2-ethylhexyl)phosphoric acid. The results showed a quantitative extraction (87.40%) of gadolinium ion at the optimum conditions of 0.025 M tributyl phosphate + 0.075 M di-(2-ethylhexyl phosphate), 4% span 80 as surfactant, 9000 rpm emulsification stirring speed and 0.5 M nitric acid as stripping phase, for a feed containing 1.5 mg/L gadolinium ion and 3 mg/L samarium ion at 5 M HNO3.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Wu, L. Wang, L. Zhao, P. Zhang, H. El-Shall, B. Moudgil, X. Huang and L. Zhang, Chem. Eng. J., 335, 774 (2018); https://doi.org/10.1016/j.cej.2017.10.143
- V. Balaram, Geosci. Frontiers, 10, 1285 (2019); https://doi.org/10.1016/j.gsf.2018.12.005
- B. Swain and E.O. Otu, Sep. Purif. Technol., 83, 82 (2011); https://doi.org/10.1016/j.seppur.2011.09.015
- K. Binnemans, P.T. Jones, B. Blanpain, T. Van Gerven, Y. Yang, A. Walton and M. Buchert, J. Clean. Prod., 51, 1 (2013); https://doi.org/10.1016/j.jclepro.2012.12.037
- T. Fishman, R.J. Myers, O. Rios and T.E. Graedel, Resources, 7, 9 (2018); https://doi.org/10.3390/resources7010009
- M. Al Rashdi, M.R. El Tokhi, S. Alaabed, E. El Mowafi and A.A. Arabi, Nat. Resour. Res., 29, 4149 (2020); https://doi.org/10.1007/s11053-020-09661-z
- H.M. Dale, J.R.L. de Mattos and M.S. Dias, IntechOpen., 175, 8 (2013).
- M.A. Ibrahim, B. Hazhirkarzar and A.B. Dublin, Gadolinium Magnetic Resonance Imaging, StatPearls: United States (2021).
- K. Kondo, M. Oguri and M. Matsumoto, Chem. Eng. Transac., 32, 919 (2013); https://doi.org/10.3303/CET1332154
- M. Chakraborty, C. Bhattacharya and S. Datta, In Eds.: V. Kislik, Emulsion Hybrid Liquid Membranes: Definitions and Classification, Theories, Module Design, Applications, New Directions and Perspectives, In: Liquid Membranes Principles and Applications in Chemical Separations & Wastewater Treatment, Edn.: 1, Elsevier, Boston, pp. 141-200 (2010)
- H. Shaaban, RSC Adv., 13, 5058 (2023); https://doi.org/10.1039/D2RA08221G
- A. Abdelrasoul, H. Doan, A. Lohi and C. Cheng, Mass Transfer Mechanisms and Transport Resistances in Membrane Separation Process, IntechOpen, Chap. 2, pp. 15-40 (2015).
- Z. Zhou, W. Qin, W. Fei and Y. Li, Chin. J. Chem. Eng., 20, 36 (2012); https://doi.org/10.1016/S1004-9541(12)60360-7
- J.W. Frankenfeld, R.P. Cahn and N.N. Li, Sep. Sci. Technol., 16, 385 (1981); https://doi.org/10.1080/01496398108068528
- B. Mokhtari and K. Pourabdollah, Chin. J. Chem. Eng., 23, 641 (2015); https://doi.org/10.1016/j.cjche.2014.06.035
- A. Kumar, A. Thakur and P.S. Panesar, Rev. Environ. Sci. Biotechnol., 18, 153 (2019); https://doi.org/10.1007/s11157-019-09492-2
- R. Torkaman, M.A. Moosavian, M. Torab-Mostaedi and J. Safdari, Hydrometallurgy, 137, 101 (2013); https://doi.org/10.1016/j.hydromet.2013.04.005
- N. Effendy, K.T. Basuki, D. Biyantoro and N.K. Perwira, IOP Conf. Ser.: Mater. Sci. Eng., 349, 012044 (2018); https://doi.org/10.1088/1757-899X/349/1/012044
- M. Nascimento, B.M. Valverde, F.A. Ferreira, R.D.C. Gomes and P.S.M. Soares, REM Rev. Escola Minas, 68, 427 (2015); https://doi.org/10.1590/0370-44672015680140
- A. Pedcenko, S. Molokov and B. Bardet, Process Metall. Mater. Process. Sci., 48, 6 (2017); https://doi.org/10.1007/s11663-016-0840-5
- H. Liu, G. He, L. Li, S. Gu, C. Liu and G. Xiao, J. Dispers. Sci. Technol., 27, 773 (2006); https://doi.org/10.1080/01932690500459416
- M.V. Purwani and D. Biyantoro, J. Tek. Bhn. Nuklir., 9, 55 (2013).
- Y. Wan, J. Membr. Sci., 196, 185 (2002); https://doi.org/10.1016/S0376-7388(01)00554-3
- K.T. Basuki and N.S. Pamungkas, Indon. J. Chem., 19, 865 (2019); https://doi.org/10.22146/ijc.35783
- N. Jusoh and N. Othman, Malaysian J. Fundam. Appl. Sci., 12, 114 (2017); https://doi.org/10.11113/mjfas.v12n3.429
- K. Abbassian and A. Kargari, J. Environ. Chem. Eng., 4, 3926 (2016); https://doi.org/10.1016/j.jece.2016.08.030
- Z. Fajun, T. Zhexi, Y. Zhongqi, S. Hongzhi, W. Yanping and Z. Yufei, Energy Sci. Eng., 8, 4158 (2020); https://doi.org/10.1002/ese3.814
- V.S. Kislik, Principles & Applications in Chemical Separations & Wastewater Treatment, Elsevier: Netherlands (2010).
- A. Kargari, T. Kaghazchi, M. Sohrabi and M. Soleimani, J. Membr. Sci., 233, 1 (2004); https://doi.org/10.1016/j.memsci.2003.09.027
- M.S. Gasser, N.E. El-Hefny and J.A. Daoud, J. Hazard. Mater., 151, 610 (2008); https://doi.org/10.1016/j.jhazmat.2007.06.032
- B. Sengupta, R. Sengupta and N. Subrahmanyam, Hydrometallurgy, 84, 43 (2006); https://doi.org/10.1016/j.hydromet.2006.04.002
- A.L. Ahmad, A. Kusumastuti, C.J.C. Derek and B.S. Ooi, Chem. Eng. J., 171, 870 (2011); https://doi.org/10.1016/j.cej.2011.05.102
- B. Sengupta, R. Sengupta and N. Subrahmanyam, Hydrometallurgy, 81, 67 (2006); https://doi.org/10.1016/j.hydromet.2005.10.002
- J. Perera and G. Stevens, Eds.: A.K. Pabby, S.S.H. Rizvi and A.M.S. Requena, Handbook of Membrane Separations: Chemical, Pharmaceutical, Food and Biotechnological Applications, Edn. 1, CRC Press: Boca Raton (2008).
- S. Laki and A. Kargari, J. Membr. Sci. Res., 2, 33 (2016); https://doi.org/10.22079/JMSR.2016.15876
- T. Kageyama, H. Matsumiya and M. Hiraide, Anal. Bioanal. Chem., 379, 1083 (2004); https://doi.org/10.1007/s00216-004-2669-z
References
S. Wu, L. Wang, L. Zhao, P. Zhang, H. El-Shall, B. Moudgil, X. Huang and L. Zhang, Chem. Eng. J., 335, 774 (2018); https://doi.org/10.1016/j.cej.2017.10.143
V. Balaram, Geosci. Frontiers, 10, 1285 (2019); https://doi.org/10.1016/j.gsf.2018.12.005
B. Swain and E.O. Otu, Sep. Purif. Technol., 83, 82 (2011); https://doi.org/10.1016/j.seppur.2011.09.015
K. Binnemans, P.T. Jones, B. Blanpain, T. Van Gerven, Y. Yang, A. Walton and M. Buchert, J. Clean. Prod., 51, 1 (2013); https://doi.org/10.1016/j.jclepro.2012.12.037
T. Fishman, R.J. Myers, O. Rios and T.E. Graedel, Resources, 7, 9 (2018); https://doi.org/10.3390/resources7010009
M. Al Rashdi, M.R. El Tokhi, S. Alaabed, E. El Mowafi and A.A. Arabi, Nat. Resour. Res., 29, 4149 (2020); https://doi.org/10.1007/s11053-020-09661-z
H.M. Dale, J.R.L. de Mattos and M.S. Dias, IntechOpen., 175, 8 (2013).
M.A. Ibrahim, B. Hazhirkarzar and A.B. Dublin, Gadolinium Magnetic Resonance Imaging, StatPearls: United States (2021).
K. Kondo, M. Oguri and M. Matsumoto, Chem. Eng. Transac., 32, 919 (2013); https://doi.org/10.3303/CET1332154
M. Chakraborty, C. Bhattacharya and S. Datta, In Eds.: V. Kislik, Emulsion Hybrid Liquid Membranes: Definitions and Classification, Theories, Module Design, Applications, New Directions and Perspectives, In: Liquid Membranes Principles and Applications in Chemical Separations & Wastewater Treatment, Edn.: 1, Elsevier, Boston, pp. 141-200 (2010)
H. Shaaban, RSC Adv., 13, 5058 (2023); https://doi.org/10.1039/D2RA08221G
A. Abdelrasoul, H. Doan, A. Lohi and C. Cheng, Mass Transfer Mechanisms and Transport Resistances in Membrane Separation Process, IntechOpen, Chap. 2, pp. 15-40 (2015).
Z. Zhou, W. Qin, W. Fei and Y. Li, Chin. J. Chem. Eng., 20, 36 (2012); https://doi.org/10.1016/S1004-9541(12)60360-7
J.W. Frankenfeld, R.P. Cahn and N.N. Li, Sep. Sci. Technol., 16, 385 (1981); https://doi.org/10.1080/01496398108068528
B. Mokhtari and K. Pourabdollah, Chin. J. Chem. Eng., 23, 641 (2015); https://doi.org/10.1016/j.cjche.2014.06.035
A. Kumar, A. Thakur and P.S. Panesar, Rev. Environ. Sci. Biotechnol., 18, 153 (2019); https://doi.org/10.1007/s11157-019-09492-2
R. Torkaman, M.A. Moosavian, M. Torab-Mostaedi and J. Safdari, Hydrometallurgy, 137, 101 (2013); https://doi.org/10.1016/j.hydromet.2013.04.005
N. Effendy, K.T. Basuki, D. Biyantoro and N.K. Perwira, IOP Conf. Ser.: Mater. Sci. Eng., 349, 012044 (2018); https://doi.org/10.1088/1757-899X/349/1/012044
M. Nascimento, B.M. Valverde, F.A. Ferreira, R.D.C. Gomes and P.S.M. Soares, REM Rev. Escola Minas, 68, 427 (2015); https://doi.org/10.1590/0370-44672015680140
A. Pedcenko, S. Molokov and B. Bardet, Process Metall. Mater. Process. Sci., 48, 6 (2017); https://doi.org/10.1007/s11663-016-0840-5
H. Liu, G. He, L. Li, S. Gu, C. Liu and G. Xiao, J. Dispers. Sci. Technol., 27, 773 (2006); https://doi.org/10.1080/01932690500459416
M.V. Purwani and D. Biyantoro, J. Tek. Bhn. Nuklir., 9, 55 (2013).
Y. Wan, J. Membr. Sci., 196, 185 (2002); https://doi.org/10.1016/S0376-7388(01)00554-3
K.T. Basuki and N.S. Pamungkas, Indon. J. Chem., 19, 865 (2019); https://doi.org/10.22146/ijc.35783
N. Jusoh and N. Othman, Malaysian J. Fundam. Appl. Sci., 12, 114 (2017); https://doi.org/10.11113/mjfas.v12n3.429
K. Abbassian and A. Kargari, J. Environ. Chem. Eng., 4, 3926 (2016); https://doi.org/10.1016/j.jece.2016.08.030
Z. Fajun, T. Zhexi, Y. Zhongqi, S. Hongzhi, W. Yanping and Z. Yufei, Energy Sci. Eng., 8, 4158 (2020); https://doi.org/10.1002/ese3.814
V.S. Kislik, Principles & Applications in Chemical Separations & Wastewater Treatment, Elsevier: Netherlands (2010).
A. Kargari, T. Kaghazchi, M. Sohrabi and M. Soleimani, J. Membr. Sci., 233, 1 (2004); https://doi.org/10.1016/j.memsci.2003.09.027
M.S. Gasser, N.E. El-Hefny and J.A. Daoud, J. Hazard. Mater., 151, 610 (2008); https://doi.org/10.1016/j.jhazmat.2007.06.032
B. Sengupta, R. Sengupta and N. Subrahmanyam, Hydrometallurgy, 84, 43 (2006); https://doi.org/10.1016/j.hydromet.2006.04.002
A.L. Ahmad, A. Kusumastuti, C.J.C. Derek and B.S. Ooi, Chem. Eng. J., 171, 870 (2011); https://doi.org/10.1016/j.cej.2011.05.102
B. Sengupta, R. Sengupta and N. Subrahmanyam, Hydrometallurgy, 81, 67 (2006); https://doi.org/10.1016/j.hydromet.2005.10.002
J. Perera and G. Stevens, Eds.: A.K. Pabby, S.S.H. Rizvi and A.M.S. Requena, Handbook of Membrane Separations: Chemical, Pharmaceutical, Food and Biotechnological Applications, Edn. 1, CRC Press: Boca Raton (2008).
S. Laki and A. Kargari, J. Membr. Sci. Res., 2, 33 (2016); https://doi.org/10.22079/JMSR.2016.15876
T. Kageyama, H. Matsumiya and M. Hiraide, Anal. Bioanal. Chem., 379, 1083 (2004); https://doi.org/10.1007/s00216-004-2669-z